DIRECTIONS: Half-life and Compound Interest are special types of exponential functions for decay and growth, respectively.

Compound interest is interest earned or paid on both the principal and previously earned interest. Its function has the form

\[A = P \left(1 + \frac{r}{n}\right)^{nt} \]

- \(A \) represents the balance after \(t \) years
- \(P \) represents the principal, or original amount
- \(r \) represents the annual rate of interest expressed as a decimal
- \(n \) represents the number of times interest is compounded per year
- \(t \) represents time in years

The **half-life** of a substance is the time it takes for one-half of the substance to decay into another substance. Its function has the form

\[A = P \left(0.5\right)^t \]

- \(A \) represents the final amount
- \(P \) represents the original amount
- \(t \) represents the number of half-lives in a given time period

1.) How much money will you earn if you invest $27,000 at a rate of 3.75% compounded quarterly over 3 years. How does this amount change if you compound it monthly?

- \(P = \) _______
- \(r = \) _______
- \(n = \) _____, _____
- Answer = _______, _______

2.) The half-life of strontium-90 is approximately 29 years (actual data). How much of a 500 g sample of strontium-90 will remain after 87 years?

- \(a = \) _______
- \(r = \) _______
- \(t = \) _______
- Answer = __________

3.) The half-life of cobalt-60 (used in radiation therapy) is 5.26 years (actual data). How much of a 200 g sample of cobalt-60 will remain after 50 years?

- \(a = \) _______
- \(r = \) _______
- \(t = \) _______
- Answer = __________
Answers (show your work)

1.) $30,199.12 ; $30,209.65

2.) 62.5 g of strontium-90

3.) .275 g of cobalt-60