Think of a number, any number:

- 1) Choose your favorite number b/w 1 & 20.
- 2) Double it.
- 3) Add 10.
- 4) Divide by 2.
- 5) Subtract your starting number.

Write your result on your desk and cover it up.

Today's learning objective:

By the end of class, I will be able to solve logarithmic problems utilizing the full suite of log properties.

Today's language objective:

 $\frac{\chi^{2}}{\chi^{3}} = \chi^{4}$

Division ~ subtraction

Multiplication ~ addition

Base → The base is the base

Input vs Output

all questions are non-calc

[Maximum mark: 13]

Solve the following equations.

(d)
$$\log_2 x + \log_2(x - 7) = 3$$
 [5 marks]
$$\log_2 x \left(\frac{\chi}{\chi^2 - 7\chi} \right) = 3$$

17.) Solve
$$\log_2 x + \log_2(x - 2) = 3$$
, for $x > 2$.

RIFA

Let $f(x) = \log_a x, x > 0$.

- (a)
- (i) f(a); $log_a a = ? = 1 = 0.7 = 24 24$ (ii) f(1); 0

 - (iii) $f(a^4)$.

- 88.) Find the **exact** value of x in each of the following equations.
 - (a) $5^{x+1} = 625 = 5^4$ $\chi = 3$
 - (b) $\log_a (3x + 5) = 2$

(Tota

$$\alpha^2 = 3x + 5$$

$$\alpha^2 = 3x + 5$$

$$\alpha^2 = 5$$

$$\alpha^2 = 5$$

126.) Solve the equation $\log_{27} x = 1 - \log_{27} (x - 0.4)$.

$$|\log_{27} x + \log_{27} (x - 0.4) = 1$$

$$\chi^{2} - 0.4x - 27 = 0$$

$$5\chi^{2} - 2x - 135 = 0$$

145.) Solve the equation
$$\log_9 81 + \log_9 \frac{1}{9} + \log_9 3 = \log_9$$

$$\chi = 27$$

Find the inverse for y = 5x - 2

$$x = 5y - 2$$
 $x + 2 = 5y$
 $x + 2 = 5y$
inverse
$$x + 2 = y^{-1}$$

Today's learning objective:

By the end of class, I will be able to write inverse and composite functions and remind myself of logarithmic rules.

Today's language objective:

$$f^{-1}(x)$$
 USA $f(g(x))$ intil $(f \cdot g)(x)$

[Maximum mark: 6]

The functions f and g are defined by $f(x) \Rightarrow 3x$, $g(x) \Rightarrow x + 2$.

- (a) Find an expression for $(f \circ g)(x) = 3(x+2) = 3x+6$ [2 ma
- (b) Find $f^{-1}(18) + g^{-1}(18)$. [4 ma

Let $f(x) = k \log_2 x$.

- (a) Given that $f^{-1}(1) = 8$, find the value of k.
- (b) Find $f^{-1}\left(\frac{2}{3}\right)$.

$$2^{13} = y^{3}$$
 $2^{13} = y^{3}$
 $2^{13} = y^{3}$

$$x = K \log_2 \frac{y}{x}$$
 $x = \log_2 \frac{y}{x}$
 $2^x = \frac{y}{x}$
 $2^x = \frac{y}{x}$
 $2^x = \frac{y}{x}$
 $2^x = \frac{y}{x}$

Consider the functions f and g where f(x) = 2x - 3 and g(x) = x - 4.

- (a) Find the inverse function, f^{-1} and g^{-1} : 4 + 4
- (b) Find $(g^{-1} \circ f)(x)$. $(2 \times -3) + 4 = 2x + 1$ (c) Given that $(f^{-1} \circ g)(x) = \frac{x-1}{2}$, solve $(f^{-1} \circ g)(x) = (g^{-1} \circ f)(x)$. (x-1) = 4x + 2

Let
$$h(x) = \frac{f(x)}{g(x)}, x \neq 2$$
.

- (d) Sketch the graph of h for $-3 \le x \le 8$ and $-2 \le y \le 8$, including (i)
 - Write down the equations of the asymptotes. (11)

$$5 + 5 \ln 3 - 5 \ln 0.5$$

 $5 + 5 (\ln 3 - \ln 0.5)$
 $5 + 5 \ln 6 \approx 14.0$

[Maximum marks 7]

Let $f(x) = \ln(x + 2) + \ln 5$, for x > -5.

(a) Find
$$f^{-1}(x)$$
. $\chi = \ln(5y + 10)$

Let
$$g(x) = e^x + 2$$

In = loge

$$e^{x} = 5y + 10$$
 $y = \frac{e^{x} - 10}{5}$

Find $(g \circ f)(x)$, giving your answer in the form ax + b, where $a, b \in \mathbb{Z}$. (b)

Find
$$(g \circ f)(x)$$
, giving your answer in the form
$$(\ln (5x+10)) + 2$$

$$y = 0$$

$$\ln (5x+10)$$

$$y = 0$$

$$\ln (5x+10)$$

$$y = 0$$

$$\ln (5x+10)$$

$$\ln (y-2) = \ln(5x+10) \\
y-2 = 5x+10 \\
y=6x+12$$

1.) Let f(x) = 7 - 2x and g(x) = x + 3.

- (a) Find $(g \circ f)(x)$.
- (b) Write down $g^{-1}(x)$.
- (c) Find $(f \circ g^{-1})(5)$.

9.) Let
$$f(x) = \log_3 \frac{x}{2} + \log_3 16 - \log_3 4$$
, for $x > 0$.

(a) Show that $f(x) = \log_3 2x$.

- (b) Find the value of f(0.5) and of f(4.5).

The function f can also be written in the form $f(x) = \frac{\ln ax}{1 - L}$.

- (c) Write down the value of a and of b.
 - Hence on graph paper, **sketch** the graph of f, for $-5 \le x \le 5$, $-5 \le y \le 5$, using (ii)scale of 1 cm to 1 unit on each axis.
 - Write down the equation of the asymptote. (iii)
- Write down the value of $f^{-1}(0)$. (d)

The point A lies on the graph of f. At A, x = 4.5.

On your diagram, sketch the graph of f^{-1} , noting clearly the image of point A. (e)