Step 1: Determine mean, median, mode, standard deviation, range, and IQR for the temperature data below. [source: NASA GISS Surface Temperature Analysis]							
Гокуо (С	ōkyo (C°):						
1880	1900	1920	1940	1960	1980	2000	2014
14.9	14.9	15.3	15.4	16.1	15.6	16.8	16.7
te		ean, median, lata below in + 32					or the
te	emperature of $C^o = C^o * 1.80$	lata below in					or the
te	emperature of $C^o = C^o * 1.80$	lata below in					2014
Tokyo (F	emperature of semperature of sempera	tata below in + 32 1920 speaking, exp	F°. [source:)	1960 perations a	1980	2000	2014
Tokyo (F	emperature of semperature of sempera	1920	F°. [source:)	1960 perations a	1980	2000	2014

DATE: 01/24/2018

NAME:

NAME:			DATE: 01/24/2018	
	2.)			
[Ma	ximun	n mark: 5]		
A da	ıta set	has a mean of 20 and a standard deviation of 6.		
(a)	Eacl	value in the data set has 10 added to it. Write down the value of		
	(i)	the new mean;		
	(ii)	the new standard deviation.	[2 marks]	
(b)	Each value in the original data set is multiplied by 10.			
	(i)	Write down the value of the new mean.		
	(ii)	Find the value of the new variance.	[3 marks]	

NAME:	DATE: 01/24/2018

Answer key (show all calculations and inputs to receive full marks)

1.) Here's what we want:

If we multiply and add numbers to our data, how does this impact standard deviation, mean, and mode?

Does multiplication impact all three? Does addition impact all three? Describe how the operations of multiplication and addition impact those three data descriptors.

2.) tutorials (you can do these all in your head)