19.) In any given season, a soccer team plays 65 % of their games at home. When the team plays at home, they win 83 % of their games. When they play away from home, they win 26 % of their games.

The team plays one game.

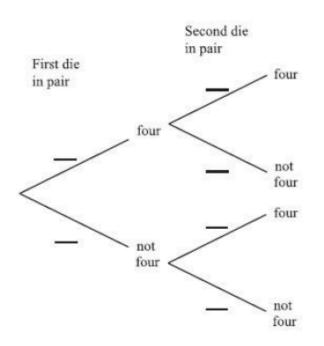
- (a) Find the probability that the team wins the game.
- (b) If the team does not win the game, find the probability that the game was played at home.

(4) (Total 8 marks)

(4)

16.) The letters of the word PROBABILITY are written on 11 cards as shown below.

P	R	0	B	A	B	Ι	L	Ι	Т	Y
-	**	-	-	× *	-		-	<u> </u>	•	-


Two cards are drawn at random without replacement. Let A be the event the first card drawn is the letter A. Let B be the event the second card drawn is the letter B.

(a)	Find $P(A)$.	(1)
(b)	Find $P(B \mid A)$.	(2)
(c)	Find $P(A \cap B)$.	(3) (Total 6 marks)

Can you draw a histogram? Can you interpret a cumulative frequency diagram?

48.) A pair of fair dice is thrown.

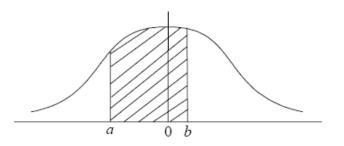
(a) Copy and complete the tree diagram below, which shows the possible outcomes.

(3)

Let E be the event that exactly one four occurs when the pair of dice is thrown.

(b)	Calculate $P(E)$.	
		(3)

The pair of dice is now thrown five times.

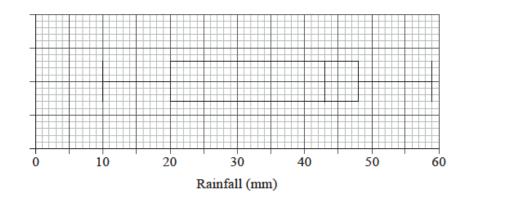

(c)	Calculate the probability that event E occurs exactly three times in the five throws.	(3)
(d)	Calculate the probability that event E occurs at least three times in the five throws.	(3)
	(Total 12 n	ıarks)

18.) A random variable X is distributed normally with mean 450 and standard deviation 20.

- (a) Find $P(X \le 475)$. (2)
- (b) Given that P(X > a) = 0.27, find a.

(4) (Total 6 marks)

- Reaction times of human beings are normally distributed with a mean of 0.76 seconds and a standard deviation of 0.06 seconds.
 - (a) The graph below is that of the standard normal curve. The shaded area represents the probability that the reaction time of a person chosen at random is between 0.70 and 0.79 seconds.


- Write down the value of a and of b.
- (ii) Calculate the probability that the reaction time of a person chosen at random is
 - (a) greater than 0.70 seconds;
 - (b) between 0.70 and 0.79 seconds. [6 marks]

[Maximum mark: 6]

A random variable X is distributed normally with a mean of 100 and a variance of 100.

- (a) Find the value of X that is 1.12 standard deviations above the mean. [4 marks]
- (b) Find the value of X that is 1.12 standard deviations below the mean. [2 marks]

- NAME:
- 5. The distribution of rainfall in a town over 80 days is displayed on the following box-and-whisker diagram.

- (a) Write down the median rainfall. [1]
 (b) Write down the minimum rainfall. [1]
- (c) Find the interquartile range. [2]
- (d) Write down the number of days the rainfall will be
 - (i) between 43 mm and 48 mm;
 - (ii) between 20 mm and 59 mm.
- 12. A survey investigated the relationship between the number of cleaners, n, and the amount of time, t, it takes them to clean a school.

Number of	Time, t	
cleaners, <i>n</i>	(minutes)	
1	193	
2	172	
3	118	
5	112	
6	87	

- (a) Use your graphic display calculator to write down the equation of the regression line *t* on *n*.
- (b) Write down the value of the Pearson's product-moment correlation coefficient, r. [2]
- (c) Use your regression equation to find the amount of time 4 cleaners take to clean the school.

[2]

[2]

[2]

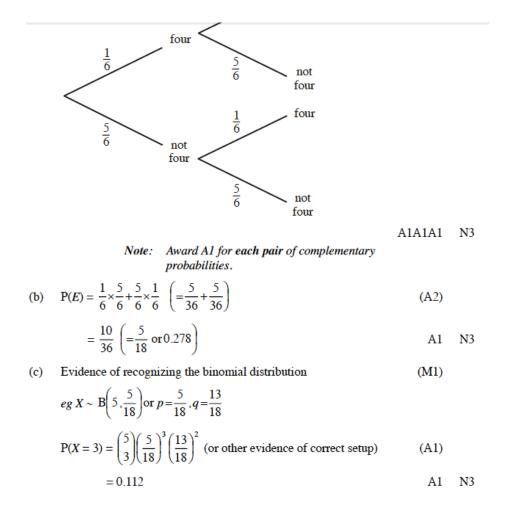
19.) (a) appropriate approach (M1) *e.g.* tree diagram or a table

$P(win) = P(H \cap W) + P(A \cap W))$	(M1)
= (0.65)(0.83) + (0.35)(0.26)	A1
= 0.6305 (or 0.631)	A1N2

(b) evidence of using complement (M1) e.g. 1-p, 0.3695

choosing a formula for conditional probability (M1)

$$e.g. P(H \mid W') = \frac{P(W' \cap H)}{P(W')}$$


e.g.
$$\frac{(0.65)(0.17)}{0.3695} \left(= \frac{0.1105}{0.3695} \right)$$
 A1
P(home) = 0.299 A1N3

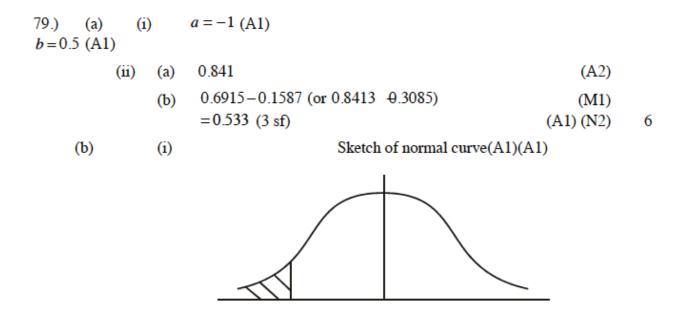
16.) (a)
$$P(A) = \frac{1}{11}$$
 A1 N1
(b) $P(B \mid A) = \frac{2}{10}$ A2N2
(c) recognising that $P(A \cap B) = P(A) \times P(B \mid A)$ (M1)
correct values (A1)

$$e.g. P(A \cap B) = \frac{1}{11} \times \frac{2}{10}$$

 $P(A \cap B) = \frac{2}{110}$
A1N3

[6]

48.)



(d) METHOD 1

Evidence of using the complement	M1	
$eg P(X \ge 3) = 1 - P(X \le 2)$		
Correct value 1-0.865	(A1)	
= 0.135	A1	N 2

evidence of attempt to find $P(X \le 475)$ (M1) 18.) (a) *e.g.* $P(Z \le 1.25)$ A1 N2 $P(X \le 475) = 0.894$ (b) evidence of using the complement (M1) e.g. 0.73, 1-p z = 0.6128(A1) setting up equation (M1) *e.g.* $\frac{a-450}{20} = 0.6128$ *a* = 462 A1N3

[6]

(ii)
$$c = 0.647$$

(A2) 4

[10]

[6]

[6]

37.) METHOD 1

(a)	$\sigma = 10$ $1.12 \times 10 = 11.2$ 11.2 + 100	(A1) A1 (M1)
(b)	x = 111.2 100 - 11.2 = 88.8	A1N2 (M1) A1N2

METHOD 2

(a)	$\sigma = 10$ Evidence of using standardisation formula	(A1) (M1)
	$\frac{x-100}{10} = 1.12$	A1
	x = 111.2	A1N2
(b)	$\frac{100-x}{10} = 1.12$	A1
	x = 88.8	A1N2

Box and whisker problem:

43, 10, 28, 20 days, 60 days

Cleaning problem:

t = -20.1n + 205r = -0.941125 mins