ASSIGNMENT: Sine Rule / Cosine Rule / Trigonometric Area
DIRECTIONS: Here are the formulas that will be useful in solving the problem below. Remember, $\boldsymbol{\pi = 1 8 0 ^ { \circ }}$ and a triangle's angles must sum to 180°.

The answer key is on the PDF online. Please try the problem first.

The following diagram shows a circle with centre O and radius 4 cm .

The points A, B and C lie on the circle. The point D is outside the circle, on (OC). Angle $\mathrm{ADC}=0.3$ radians and angle $\mathrm{AOC}=0.8$ radians.
(a) Find AD.
(b) Find OD.
(c) Find the area of sector OABC .
(d) Find the area of region ABCD .

| Cosine rule | $c^{2}=a^{2}+b^{2}-2 a b \cos C ; \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ | |
| :--- | :--- | :--- | :--- |
| Sine rule | $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ | |
| Area of a triangle | $A=\frac{1}{2} a b \sin C$ | Length of an arc |
| | Area of a sector | $l=\theta r$ |
| [non-calc] | | $A=\frac{1}{2} \theta r^{2}$ |

[Maximum marks 16]

[non-calc]
The following diagram shows a semicircle centre O , diameter [AB], with radius 2 .
Let P be a point on the circumference, with $\mathrm{POB}=\theta$ radians.

(a) Find the area of the triangle OPB, in terms of θ.
(b) Explain why the area of triangle OPA is the same as the area triangle OPB.

Let S be the total area of the two segments shaded in the diagram below.

(c) Show that $S=2(\pi-2 \sin \theta) .1$
(d) Find the value of θ when S is a local minimum, justifying that it is a minimum.

Answers (command term is "find" throughout, so please show all calculations):

1) 9.71
2) 12.1
3) $6.4 \mathrm{~cm}^{2}$
4) $10.8 \mathrm{~cm}^{2}$

For the second question, use the trigonometric triangular area formula.
Also, isn't it interesting that $\sin 30^{\circ}=\sin 150^{\circ}$. So interesting.

