ASSIGNMENT: Volume of solids rotated around x-axis $\begin{aligned} & \text { Volume of revolution } \\ & \text { about the } x \text {-axis from } x=a\end{aligned} \quad V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$ to $x=b$
1.)
[SL-calc]
Let $f(x)=x \cos (x-\sin x), 0 \leq x \leq 3$.
(a) Sketch the graph of f on the following set of axes.

(b) The graph of f intersects the x-axis when $x=a, a \neq 0$. Write down the value of a.
(c) The graph of f is revolved 360° about the x-axis from $x=0$ to $x=a$.

Find the volume of the solid formed.
(Total 8 marks)
\qquad
\qquad
\qquad
\qquad
\qquad

Answer key: show all calculations to receive full marks

1) use your calculator for parts $a \& b ;$

For part C, input the squared function into the calculator and find the definite integral using 2nd Calc $\int f(x) d x$. Because the command term is "find," you'll need to show one intermediary step.

Input known values into the Volume formula for full credit.

1) $V=5.90$ (3 SF!!!)

For the quiz Friday, you'll need to...
*calculate the normal to a tangent at a specific point on a curve
*calculate the volume of a revolution
*calculate area under a curve
*the curve is friendly (a quadratic)

