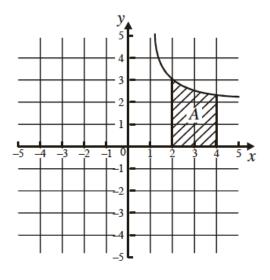

<u>ASSIGNMENT</u>: Reverse Chain Rule Integration [non-calc]

59.) (a) Consider the function $f(x) = 2 + \frac{1}{x-1}$. The diagram below is a sketch of part of the graph of y = f(x).

Copy and complete the sketch of f(x).

(2)

- (b) (i) Write down the x-intercepts and y-intercepts of f(x).
 - (ii) Write down the equations of the asymptotes of f(x).


(4)

- (c) (i) Find f'(x).
 - (ii) There are no maximum or minimum points on the graph of f(x). Use your expression for f'(x) to explain why.

(3)

part d) of the same problem continues below...

The region enclosed by the graph of f(x), the x-axis and the lines x = 2 and x = 4, is labelled A, as shown below.

(d) (i) Find
$$\int f(x) dx$$
.

- (ii) Write down an expression that represents the area labelled A.
- (iii) Find the area of A.

(Total 16 marks)

2) Find the integral of f(x).
$$f(x) = 5\cos\frac{\pi}{4}x$$

3) Given that
$$f(x) = (2x + 5)^3$$
 find

(a)
$$f'(x)$$
;

(b)
$$\int f(x) dx$$
.