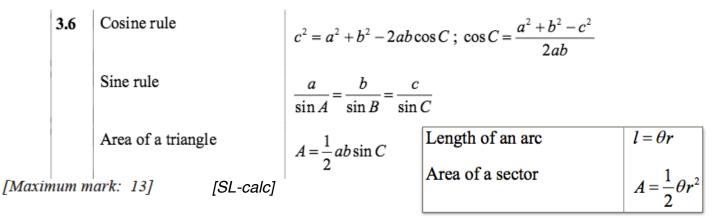
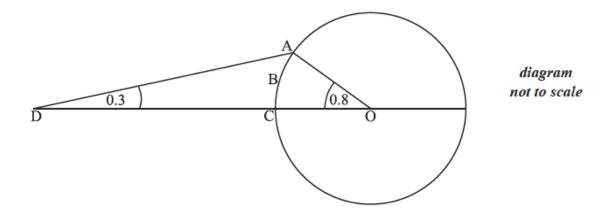
<u>ASSIGNMENT</u>: Sine Rule / Cosine Rule / Trigonometric Area <u>DIRECTIONS</u>: Here are the formulas that will be useful in solving the problem below. Remember, $\pi = 180^{\circ}$ and a triangle's angles must sum to 180°.

The answer key is on the PDF online. Please try the problem first.



The following diagram shows a circle with centre O and radius 4 cm.

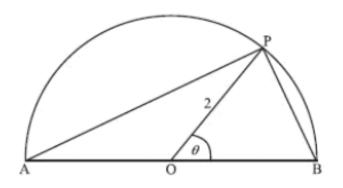


The points A, B and C lie on the circle. The point D is outside the circle, on (OC). Angle ADC = 0.3 radians and angle AOC = 0.8 radians.

(a)	Find AD.	[3 marks]
(b)	Find OD.	[4 marks]
(c)	Find the area of sector OABC.	[2 marks]
(d)	Find the area of region ABCD.	[4 marks]

3.6Cosine rule
$$c^2 = a^2 + b^2 - 2ab\cos C$$
; $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Area of a triangle $A = \frac{1}{2}ab\sin C$ [Maximum marks 16][non-calc]

The following diagram shows a semicircle centre O, diameter [AB], with radius 2. Let P be a point on the circumference, with $\hat{POB} = \theta$ radians.

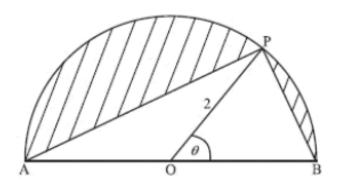


NAME:

(a) Find the area of the triangle OPB, in terms of θ . (2)

(b) Explain why the area of triangle OPA is the same as the area triangle OPB. (3)

Let S be the total area of the two segments shaded in the diagram below.



- (c) Show that $S = 2(\pi 2\sin \theta)$.
- (d) Find the value of θ when S is a local minimum, justifying that it is a minimum.

(8)

(3)

Answers (command term is "find" throughout, so please show all calculations):

1) 9.71 2) 12.1 3) 6.4 cm² 4) 10.8 cm²

For the second question, use the trigonometric triangular area formula.

Also, isn't it interesting that $\sin 30^\circ = \sin 150^\circ$. So interesting.