
ASSIGNMENT: Particle Motion [non-calc]

<u>DIRECTIONS</u>: A helpful mnemonic for solving these physics problems in calculus is to write the following on your paper:

S (displacement) is the integral of V (velocity) is the integral of A (acceleration) A (acceleration) is the derivative of V (velocity) is the derivative of S (displacement)

2.) The velocity $v \text{ m s}^{-1}$ of a particle at time *t* seconds, is given by $v = 2t + \cos 2t$, for $0 \le t \le 2$.

(a) Write down the velocity of the particle when t = 0.

When t = k, the acceleration is zero.

(b) (i) Show that
$$k = \frac{\pi}{4}$$

(ii) Find the exact velocity when
$$t = \frac{\pi}{4}$$
.

(c) When
$$t < \frac{\pi}{4}$$
, $\frac{dv}{dt} > 0$ and when $t > \frac{\pi}{4}$, $\frac{dv}{dt} > 0$.

Sketch a graph of v against t.

- (d) Let *d* be the distance travelled by the particle for $0 \le t \le 1$.
 - Write down an expression for d.
 - (ii) Represent d on your sketch.

(3) (Total 16 marks)

(8)

(4)

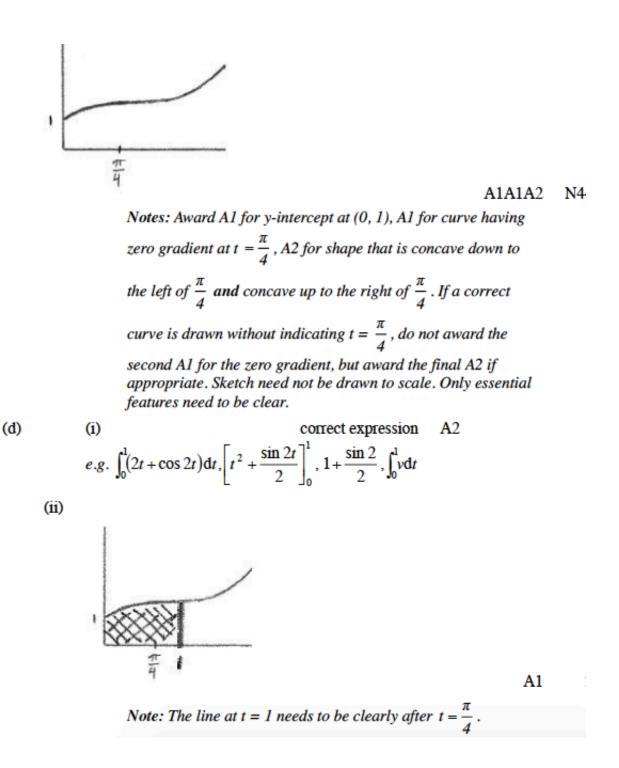
(a)
$$v = 1$$
 A1 N1 1
(b) (i) $\frac{d}{dt}(2t) = 2$ A1

$$\frac{\mathrm{d}}{\mathrm{d}t}(\cos 2t) = -2\sin 2t \qquad \qquad \text{A1A1}$$

Note: Award A1 for coefficient 2 and A1 for -sin 2t.

$$e.g. \ \frac{\mathrm{d}v}{\mathrm{d}t} = 0, 2 - 2\sin 2t = 0$$

correct manipulation A1


e.g. $\sin 2k = 1$, $\sin 2t = 1$

$$2k = \frac{\pi}{2} \left(\operatorname{accept} 2t = \frac{\pi}{2} \right)$$
 A1

$$k = \frac{\pi}{4} \qquad \text{AG} \qquad \text{NO}$$

(ii) attempt to substitute
$$t = \frac{\pi}{4}$$
 into v (M1)
 $e.g. 2\left(\frac{\pi}{4}\right) + \cos\left(\frac{2\pi}{4}\right)$
 $v = \frac{\pi}{2}$ A1 N2:

