

Today's learning objective:

By the end of class, I will be able to understand how particle motion has trigonometric properties.

Today's language objective:

- *I will be able to recognize trigonometric derivatives and integrals.
- *I will listen and offer solution strategies to a peer.

The velocity $v \text{ m s}^{-1}$ of a moving body at time t seconds is given by v = 50 - 10t.

- (a) Find its acceleration in m s⁻². 10 ms⁻²
- (b) The initial displacement s is 40 metres. Find an expression for s in terms of t.

A particle moves with a velocity v m s⁻¹ given by $v = 25 - 4t^2$ where $t \ge 0$.

- (a) The displacement, s metres, is 10 when t is 3. Find an expression for s in terms of t.
- (b) Find t when s reaches its maximum value.
- (c) The particle has a positive displacement for $m \le t \le n$. Find the value of m and the value of n.

CalC (Total 12

The acceleration, $a \text{ m s}^{-2}$, of a particle at time t seconds is given by

The particle is at rest when
$$t = 1$$
.

$$a = \frac{1}{t} + 3\sin 2t, \text{ for } t \ge 1.$$

$$a = \frac{1}{t} + 3\sin 2t, \text{ for } t \ge 1.$$

$$a = \ln t - \frac{3\cos 2t}{2} + (2) \text{ take deriv}$$
of embedded

Find the velocity of the particle when $t = 5$.

Find the velocity of the particle when t = 5.

$$0 = \ln 1 - 3 \cos 2(1) \text{ non-calc}$$

$$V(5) = \ln 5 - 3 \cos 2$$

$$\int \sin x \, dx = \cos x + C$$

$$2$$

$$\int \frac{1}{\chi} d\chi = \ln \chi + C$$

The acceleration, $a \text{ m s}^{-2}$, of a particle at time t seconds is given by $a = 2t + \cos t$.

- Find the acceleration of the particle at t = 0. (a)
- Find the velocity, v, at time t, given that the initial velocity of the particle is 2 m s⁻¹. (b)
- Find $\int_{0}^{3} v dt$, giving your answer in the form $p q \cos 3$.
- What information does the answer to part (c) give about the motion of the particle? (d)

displuement ofter 3s is non-Cosxdx = sinx+C (16-cos3) m non-calcTotal 161 78.) A ball is dropped vertically from a great height. Its velocity v is given by

$$v = 50 - 50e^{-0.2t}, t \ge 0$$

where v is in metres per second and t is in seconds.

Find the value of ν when

(i)
$$t=0$$
; $V(0) = 50 - 50e^{-0.2(0)} = 0$ ms

Find the value of
$$v$$
 when

(i) $t = 0$; $V(0) = 50 - 50e^{-0.2(0)} = 0$ Ms

(ii) $t = 10$. $V(10) = 50 - 50e^{-0.2(10)} = 50 - 50e^{-2} = (50 - \frac{50}{2})$ Ms

- (b)
- (i) Find an expression for the acceleration, a, as a function of t. $a = e^{-50} 50 = 0.2 = 10e^{-50}$ What is the value of a when t = 0? a(0)= 10 ms-2

- As t becomes large, what value does a approach?
- Explain the relationship between the answers to parts (i) and (ii).

- Let y metres be the distance fallen after t seconds.
 - Show that $y = 50t + 250e^{-0.2t} + k$, where k is a constant. (i)
 - (ii) Given that y = 0 when t = 0, find the value of k.
 - (iii) Find the time required to fall 250 m, giving your answer correct to **four** significant figures.