
What does "mutually exclusive" mean?

What does "combined" probability mean?

Probability of an event A

$$P(A) = \frac{n(A)}{n(U)}$$

Complementary events

$$P(A) + P(A') = 1$$

Combined events

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually exclusive events

 $P(A \cup B) = P(A) + P(B)$

Conditional probability

$$P(A \cap B) = P(A)P(B \mid A)$$

that

Independent events

$$P(A \cap B) = P(A) P(B)$$

kaa VYY

Today's learning objective:

By the end of class, I will understand what independent, dependent, mutually exclusive, combined, complementary, and conditional probabilities are.

Today's language objective:

I will discuss probability terminology in small groups.

So Rogers, you need to go to Vegas and follow this gambling strategy.

What about playing Texas Hold'em Poker...

What's the probability of getting pocket rockets?

Complementary: P(A) + P(A') = 1

Combined (think overlapping Venn Diagram):

Independent (think Roulette spins):

Conditional (Dependent - think cards):

Mutually Exclusive (think separate Venns):

Suppose a box contains 3 blue markers and 12 black markers. Two markers are chosen from the box without replacement. What is the probability that upon withdrawing 2 markers you find 1 is blue and 1 is black?

$$\frac{3}{15} \cdot \frac{12}{14} + \frac{12}{15} \cdot \frac{3}{14} = 34.31$$

Probability of an event A

$$P(A) = \frac{n(A)}{n(U)}$$

Complementary events

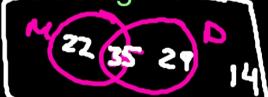
$$P(A) + P(A') = 1$$

Combined events

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mutually exclusive events

$$P(A \cup B) = P(A) + P(B)$$


Conditional probability

$$P(A \cap B) = P(A)P(B \mid A)$$

Independent events

$$P(A \cap B) = P(A) P(B)$$

- 1) Of voters in a recent election, 57% were male, 64% were Democrat, and 35% were both male and Democrat.
- a) What is the probability that a voter chosen at random is female?
- b) What is the probability that a voter chosen at random is either male or Democrat?
- c) Is being male or Democrat independent of each other?
- d) Is being male or Democrat mutually exclusive? (57)

Combined events

Conditional probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

$$P(A \cap B) = P(A)P(B \mid A)$$

$$P(A \cap B) = P(A) P(B)$$

1) A rocket being launched has three engines that are independent of each other. The probability of a single engine firing is .97. What is the probability of at least one engine not firing?

Mutually exclusive events

Conditional probability

Independent events

$$P(A) = \frac{n(A)}{n(U)}$$

$$P(A) + P(A') = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B)$$

$$P(A \cap B) = P(A)P(B \mid A)$$

$$P(A \cap B) = P(A) P(B)$$

Probability of an event A	$P(A) = \frac{n(A)}{n(U)}$
Complementary events	P(A) + P(A') = 1
Combined events	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Mutually exclusive events	$P(A \cup B) = P(A) + P(B)$
Conditional probability	$P(A \cap B) = P(A) P(B \mid A)$
Independent events	$P(A \cap B) = P(A) P(B)$

- The probability of rain on Monday is 30% and on Thursday is 40%. Assuming these are independent, what is the probability that
- it rains on both days? 12° a)
- it does not rain on Monday? 70% b)
- it rains on Monday, but not Thursday? 1976
 it rains on at least one of these days? 5876
- d)
- it doesn't rain on either day?