ASSIGNMENT: Vector Intersection
DIRECTIONS: To find the intersection of two vectors, set them equal to one another. Then use elimination to eliminate one of the parameters, t or s.

After solving for a parameter, input it into the appropriate vector and add the separate dimensions to find your intersecting x, y, and z. See reverse for example.
5.) The line L_{1} is represented by the vector equation $\boldsymbol{r}=\left(\begin{array}{c}-3 \\ -1 \\ -25\end{array}\right)+p\left(\begin{array}{c}2 \\ 1 \\ -8\end{array}\right)$.

A second line L_{2} is parallel to L_{1} and passes through the point $\mathrm{B}(-8,-5,25)$.
(a) Write down a vector equation for L_{2} in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$.

A third line L_{3} is perpendicular to L_{1} and is represented by $r=\left(\begin{array}{l}5 \\ 0 \\ 3\end{array}\right)+q\left(\begin{array}{c}-7 \\ -2 \\ k\end{array}\right)$.
(b) Show that $k=-2$.

The lines L_{1} and L_{3} intersect at the point A.
(c) Find the coordinates of A.

The lines L_{2} and L_{3} intersect at point C where $\overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}6 \\ 3 \\ -24\end{array}\right)$.
(d) (i) Find $\overrightarrow{\mathrm{AB}}$.
(ii) Hence, find $|\overrightarrow{\mathrm{AC}}|$.
13.) Two lines with equations $\boldsymbol{r}_{1}=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)+s\left(\begin{array}{c}5 \\ -3 \\ 2\end{array}\right)$ and $\boldsymbol{r}_{2}=\left(\begin{array}{l}9 \\ 2 \\ 2\end{array}\right)+t\left(\begin{array}{c}-3 \\ 5 \\ -1\end{array}\right)$ intersect at the point P. Find the coordinates of P.
(Total 6 marks)

Step 1: For any value of s and t, let's find three true equations if the vectors intersect.
$2+5 s=9-3 t$
$3-3 s=2+5 t$
$-1+2 s=2-t$

Step 2: Find the "lowest hanging fruit" for elimination of a variable. In other words, choose the two equations that yield the fastest path to eliminating " s " or " t ." I think equations 2 and 3 are the best because the " t " looks easy to eliminate.
$3-3 s=2+5 t$
$-1+2 s=2-t$$\longrightarrow \begin{gathered}3-3 s=2+5 t \\ 5(-1+2 s)=5(2-t)\end{gathered} \longrightarrow \begin{gathered}3-3 s=2+5 t \\ -5+10 s=10-5 t\end{gathered}$

Step 3: Eliminate one variable and solve for the other.

$$
\begin{aligned}
3-3 s & =2+5 t \\
-5+10 s & =10-5 t
\end{aligned}
$$

$$
-2+7 s=12
$$

$$
7 s=14 ; \quad s=2
$$

Step 4: Input your value of "s" into the appropriate vector (the one with the "s" parameter).

$$
\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right)+s\left(\begin{array}{c}
5 \\
-3 \\
2
\end{array}\right) \quad \text { input } 2 \text { as "s" } \begin{array}{crr}
2 & 5 \\
3 & (2)-3 \\
2
\end{array}
$$

Step 5: Calculate your intersection position vector, Point P.
$2+10$
$3-6$
$-1+4$$\longrightarrow \begin{array}{r}12 \\ -3 \\ 3\end{array}$

