Friday plans:

Quiz IA time

> -in the last 10 minutes of class, pause to write me a note about what you accomplished

e-mail

We learned four things about vectors last class:

- *Calculating vector direction
- *Multiplying vectors
- *Vector magnitude
- *Parallel and Perpendicular vectors

Today we'll learn how to calculate the point where two vectors intersect.

But why does it matter?

Where does the line 4x - 2y = 3 intersect

$$y = x - 7$$
?

20

Today's learning objective:

By the end of class, I will be able to visualize vector addition and multiplication as well as find the point of intersection between two vectors.

Today's language objective:

*I will use the term "intersection" with peers when referring to the point at which two vectors meet.

Let's review:

27.) Points P and Q have position vectors -5i + 11j - 8k and -4i + 9j - 5k respectively, and both lie on a line L_1 .

(a) (i) Find
$$\overrightarrow{PQ}$$
.

$$\begin{pmatrix} -4 \\ -5 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} -4 \\ -5 \\ -8 \\ 2 \\ 11 \\ -8 \end{pmatrix}$$

- (a) Find the vector \overrightarrow{PQ} .
- (b) Find a vector equation for the line through R parallel to the line (PQ).

Now for the new content:

3.) Two lines with equations
$$r_1 = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + s \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix}$$
 and $r_2 = \begin{pmatrix} 9 \\ 2 \\ 2 \end{pmatrix} + t \begin{pmatrix} -3 \\ 5 \\ -1 \end{pmatrix}$ intersect at the point P. Find

the coordinates of P.

$$\begin{bmatrix}
2 \\
3 \\
-1
\end{bmatrix} + 5 \begin{bmatrix}
5 \\
-3 \\
2
\end{bmatrix} = \begin{bmatrix}
9 \\
2 \\
2
\end{bmatrix} + \begin{bmatrix}
-3 \\
5
\end{bmatrix}$$

$$\begin{bmatrix}
2 + 55 = 7 - 3t \\
3 - 35 = 2 + 5t - 2 + 5 = 12 \\
-5 + 105 = 10 - 5t
\end{bmatrix}$$
(Total 61)

The line
$$L_1$$
 is represented by $r_1 = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the line L_2 by $r_2 = \begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix} + t \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}$.

(To

The lines L_1 and L_2 intersect at point T. Find the coordinates of T.

$$\begin{array}{c} t = 2 \\ 3 \\ 0 \\ \end{array}$$

$$\begin{array}{c} 2+5 = 3 \\ 5+25 = -3+3t \\ 3+35 = 8-4t \\ \end{array}$$

(a) Write down the equation of L_1 in the form r = a + tb.

The line
$$L_2$$
 has equation $r = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}$. The point A has position vector $\begin{pmatrix} 6 \\ 2 \\ 9 \end{pmatrix}$.

(2)

(4)

(b) Show that A lies on L_2 .

Let B be the point of intersection of lines L_1 and L_2 .

(c) (i) Show that
$$\overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 14 \end{pmatrix}$$
.

(ii) Find \overrightarrow{AB} .

- 27.) Points P and Q have position vectors -5i + 11j - 8k and -4i + 9j - 5k respectively, and lie on a line L_1 .
 - Find PQ. (a)
 - Hence show that the equation of L_1 can be written as (ii)

$$r = (-5 + s) i + (11 - 2s) j + (-8 + 3s) k.$$

$$\begin{bmatrix} -5 \\ 11 \\ -8 \end{bmatrix} + 5 \begin{bmatrix} -2 \\ 3 \end{bmatrix} =$$

The point R $(2, y_1, z_1)$ also lies on L_1 .

Find the value of y_1 and of z_1 . (b)

(b) Find the value of
$$y_1$$
 and of z_1 .

The line L_2 has equation $r = 2i + 9j + 13k + t (i + 2j + 3k)$.

L2

 $\begin{bmatrix} 2 \\ 9 \\ 13 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$

(c) The lines L_1 and L_2 intersect at a point T. Find the position vector of T.