Let's go do some work.

Today's learning objective:

By the end of class, I will be able to solve for the angle created by two intersecting vectors.

Today's language objective:

Magnitude Scalar Multiplication Cosine

V·W = |V||W| cos €

4.1	Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$
4.2	Scalar product	$\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \mathbf{w} \cos \theta$
	Angle between two vectors	$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$ $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{ \mathbf{v} \mathbf{w} }$
4.3	Vector equation of a line	r = a + tb

Calculate the acute angle between the lines with equations

calc

$$r = \begin{pmatrix} 4 \\ -1 \end{pmatrix} + s \begin{pmatrix} 4 \\ 3 \end{pmatrix} \text{ and } r = \begin{pmatrix} 2 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$4 \cdot t + 3 \cdot 1 = 1$$

4.1	Magnitude of a vector

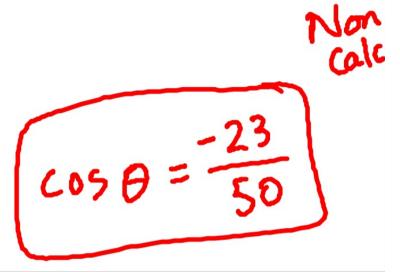
$$|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta$$

$$\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$$

Angle between two vectors

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}$$


$$r = a + tb$$

Find the cosine of the angle between the two vectors $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

4.1 Magnitude of a vector
$$|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$
4.2 Scalar product
$$v \cdot w = |v||w|\cos\theta$$

$$v \cdot w = v_1w_1 + v_2w_2 + v_3w_3$$
Angle between two vectors
$$\cos\theta = \frac{v \cdot w}{|v||w|}$$
4.3 Vector equation of a line
$$r = a + tb$$

Find the cosine of the angle between the two vectors 3i + 4j + 5k and 4i - 5j - 3k.

4.1	Magnitude of a vector	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$
4.2	Scalar product	$\mathbf{v} \cdot \mathbf{w} = \mathbf{v} \mathbf{w} \cos \theta$
	Angle between two vectors	$\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3$ $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{ \mathbf{v} \mathbf{w} }$

Two lines
$$L_1$$
 and L_2 are given by $r_1 = \begin{pmatrix} 9 \\ 4 \\ -6 \end{pmatrix} + \begin{pmatrix} -2 \\ 6 \\ 10 \end{pmatrix}$ and $r_2 = \begin{pmatrix} 1 \\ 20 \\ 2 \end{pmatrix} + t \begin{pmatrix} -6 \\ 10 \\ -2 \end{pmatrix}$.

- Let θ be the acute angle between L_1 and L_2 . Show that $\cos \theta = \frac{52}{140}$. (a)
- P is the point on L_1 when s = 1. Find the position vector of P. $\begin{pmatrix} 7 \\ 10 \\ 4 \end{pmatrix} = 2$ That P is also on L_2 . (b)
 - (ii) Show that P is also on L_2 .

4.1 Magnitude of a vector
$$|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$
4.2 Scalar product
$$v \cdot w = |v||w|\cos\theta$$

$$v \cdot w = v_1w_1 + v_2w_2 + v_3w_3$$
Angle between two vectors
$$\cos\theta = \frac{v \cdot w}{|v||w|}$$

9.) Let
$$v = \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$$
 and $w = \begin{pmatrix} k \\ -2 \\ 4 \end{pmatrix}$, for $k > 0$ The angle between v and w is $\frac{\pi}{3}$. Find the value of k .

Find the value of k.

4.3

Vector equation of a line

$$\frac{1}{2} = \frac{2k+30}{7\sqrt{k^2+20}} - \frac{1}{2}$$

4.1 Magnitude of a vector
$$|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$
4.2 Scalar product
$$v \cdot w = |v||w|\cos\theta$$

$$v \cdot w = v_1w_1 + v_2w_2 + v_3w_3$$
Angle between two vectors
$$\cos\theta = \frac{v \cdot w}{|v||w|} = 0$$
Angle between two vectors
$$\cos\theta = \frac{v \cdot w}{|v||w|} = 0$$

r = a + tb

- 4.) Line L_1 passes through points A(1, -1, 4) and B(2, -2, 5).
 - (a) Find \overrightarrow{AB} .
 - (b) Find an equation for L_1 in the form r = a + tb.

Line
$$L_2$$
 has equation $\mathbf{r} = \begin{pmatrix} 2 \\ 4 \\ 7 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$.

- (c) Find the angle between L_1 and L_2 .
- (d) The lines L_1 and L_2 intersect at point C. Find the coordinates of C.