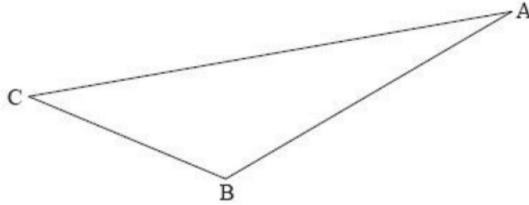


Today's learning objective:


By the end of the class, I will be able to make vector calculations with quadrilaterals and triangles.

Today's language objective:

*I will sing a parallelogram song.

The following diagram shows the obtuse-angled triangle ABC such that

$$= \begin{pmatrix} -3 \\ 0 \\ -4 \end{pmatrix} \text{ and } \overrightarrow{AC} = \begin{pmatrix} -2 \\ 2 \\ -6 \end{pmatrix}.$$

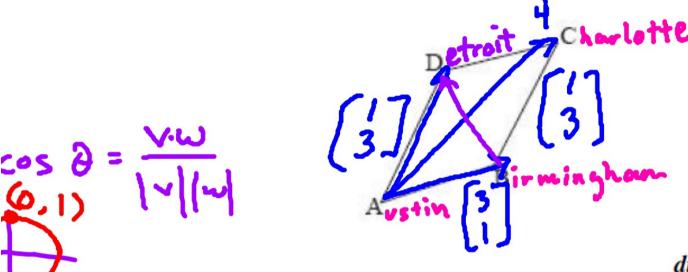
The point D is such that
$$\overrightarrow{CD} = \begin{pmatrix} -4 \\ 5 \\ p \end{pmatrix}$$
, where $p > 0$

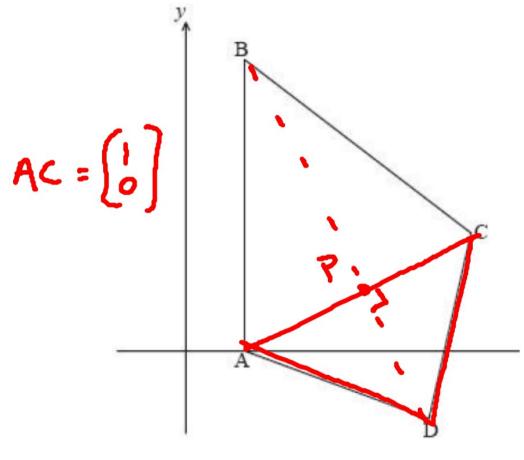
- (a) (i) Write down \overrightarrow{BA} .
 - (ii) Find \overrightarrow{BC} .

- (c)
- (i) Given that $|\overrightarrow{CD}| = \sqrt{50}$, show th

- (b) (i) Find cos ABC.
 - (ii) Hence, find sin ABC.

The following diagram shows quadrilateral ABCD, with $\overrightarrow{AD} = \overrightarrow{BC}$, $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$.




diagram not to scale

(a) Find
$$\overrightarrow{BC}$$
. $\begin{pmatrix} 1 \\ 3 \end{pmatrix} = C - B$

(b) Show that
$$\overrightarrow{BD} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$
.

(c) Show that vectors \overrightarrow{BD} and \overrightarrow{CA} are perpendicular.

iagram shows quadrilateral ABCD with vertices A(1, 0), B(1, 5), C(5, 2) and D(4, -1).

(iii) Show that \overrightarrow{AC} is perpendicular to \overrightarrow{BD} .

The line (AC) has equation r = u + sv.

- (b) (i) Write down vector \mathbf{u} and vector \mathbf{v} .
 - (ii) Find a vector equation for the line (BD).

The lines (AC) and (BD) intersect at the point P(3, k).

- (c) Show that k = 1.
- (d) Hence find the area of triangle ACD.

diagram not to scale

- (i) Show that $\overrightarrow{AC} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.
- i) Find \overrightarrow{BD} .