

Today's learning objective:

By the end of class, I will be able to find the equations of tangent lines at any point on the original curve.

Today's language objective:

I will verbalize the following vocabulary with my peer group during class.

Derivative; Tangent; Gradient Slope-intercept; Point-slope

Let's build an NHRA function:

(0,0)

$$f(x) = a(x-h)^{2} + K$$

$$(4,320) \times form$$

$$f(x) = a(x-4)^{2} + 320$$

$$f(x) = -26(x-4)^{2} + 320$$

$$-320$$

$$-320 = a(-4)^{2}$$

$$f(x) = -26(x-4)^{2} + 320 \qquad (x-4)(x-4)$$

$$f'(x) = 3(-20)(x-4)^{1} \qquad (x^{2}-8x+16)$$

$$f'(x) = -40x + 160 \qquad -20x^{2} + 160x -320$$

$$+320$$

$$f'(6) = -40(6) + 160 \qquad (6, 240)$$

$$= -240 + 160 \qquad (6, 240)$$

$$= -20(6-4)^{2} + 320$$

$$= -80 + 320$$

$$y = mx + b$$
 (6,240) $m = -80$
 $240 = -80(6) + b$
 $240 = -480 + b$
 $720 = b$ $y = -80x + 720$

Which tangent line should we analyze?

$$f(x) = -20(x-4)^{2} + 320^{2}$$

$$f'(2) = -40(2) + 160$$

$$f'(2) = 80^{2} + b$$

$$f'(2) = 80^{2} + b$$

$$f(3) = 240^{2} = 160 + b$$

$$f(3) = 240^{2} = 160 + b$$

$$f(3) = 240^{2} = 160 + b$$

What is the equation of the tangent line?

$$lnx = \frac{1}{x}$$
 $f(s) = ln 6s$
 $f'(s) = \frac{1}{6s} .6$
 $= \frac{1}{s} = s^{-1}$

Velocity

 $ms^{-1} = m/s$
 $acceleration$
 $ms^{-2} = m/s^{2}$
 $f''(s) = \frac{1}{s}$

$$y = 40x + b$$

$$300 = 40(3) + b$$

$$180 = b$$

$$y = 40x + 180$$

Remember Ms. Fowler's roller coaster?

What's the rate of change at the start of the roller coaster?