NAME:_____

DATE: 10/16A17B/2017 all non-calc

ASSIGNMENT: Trigonometric John Cusack Identities

Let
$$f(x) = \frac{1}{2}\cos^3 2x$$

a. Write down the period and range of the function f(x)

[3 marks]

- b. Consider $f(x) = -\frac{1}{16}$, $0 \le x \le \pi$. Write down the value(s) of x that satisfies the equation. [4 marks]
- c. Find the values of x for which the function f(x) is maximum and minimum. [4 marks]

[Maximum mark: 7]

Solve $\cos 2x - 3\cos x - 3 - \cos^2 x = \sin^2 x$, for $0 \le x \le 2\pi$.

Trigonometric identity	$\tan \theta = \frac{\sin \theta}{\cos \theta}$
Pythagorean identity	$\cos^2\theta + \sin^2\theta = 1$
Double angle formulae	$\sin 2\theta = 2\sin\theta\cos\theta$
	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$

Given that $\cos 2x = -\frac{7}{25}$ for $0^{\circ} < x < 360^{\circ}$ and x is **obtuse** angle,

a. Show that $\sin x = \frac{4}{5}$

[3 marks]

Solve $\tan^2 2\theta = 1$, in the interval $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Consider the function $f(x) = \cos x + \sin x$.

- (a) (i) Show that $f(-\frac{\pi}{4}) = 0$.
 - (ii) Find in terms of π , the smallest **positive** value of x which satisfies f(x) = 0.

[3 marks]