ASSIGNMENT: Graphing Trig Functions
DIRECTIONS: When graphing trig functions, your inputs are usually radians, and the outputs are the desired coordinate on the unit circle. Sine represents the y-coordinate on the unit circle while cosine represents the x-coordinate.
1.) Graph $f(x)=2 \sin (x)$ along the domain $-2 \pi \leq x \leq 2 \pi$.

Create a table with your input and exact output values.

2.)

The diagram below shows the graph of $f(x)=1+\tan \left(\frac{x}{2}\right)$ for $-360^{\circ} \leq x \leq 360^{\circ}$.

(a) On the same diagram, draw the asymptotes.
(b) Write down
(i) the period of the function;
(ii) the value of $f\left(90^{\circ}\right)$.
(c) Solve $f(x)=0$ for $-360^{\circ} \leq x \leq 360^{\circ}$.
3.)

Consider the function $f(x)=\cos x+\sin x$.
(a) (i) Show that $f\left(-\frac{\pi}{4}\right)=0$.
(ii) Find in terms of π, the smallest positive value of x which satisfies $f(x)=0$.

Answer key (ensure you show all calculations. I need to see steps in order to provide the grade you seek.)
1.) At 0 radians, the cosine coordinate on the Unit Circle would be 1. However, we are multiplying the cosine value by 2 in this particular problem.
2.) a) asymptotes are dashed horizontal or vertical lines where a function trends toward infinity
bi) period: ending - beginning x-values that are not repetitious
bii) the question is asking, "what is the output value when you input 90° as your x-value?"
c) $f(x)$ stands for " y," so this question is asking, "what x-values make the output value 0 ?"
3.) ai) input $-\pi / 4$ into for both cosine and sine, then add those values. You'll see the answer is 0 .
aii) which positive, x-value for radians will make cosine and sine be exact opposites and cancel out to make the output value 0 ?
a.) What is the amplitude? \qquad
b.) What is the period? \qquad

