ASSIGNMENTS: Geometric Sequences
DIRECTIONS: Geometric Sequences involve a set of numbers where multiplication is necessary to get to the next term (Arithmetic Sequences required addition or subtraction). For example:
$4, \underline{8}, \underline{16}, \underline{32}, \underline{64}, \ldots \quad$ what's the 9 th term?
392781
We see in this Geometric Sequence, the common ratio that multiplies each number to get to the next term is " $\underline{\mathbf{2}}$ "

$$
u_{n}=u_{1} r^{n-1}
$$

In our example above, we would input " 9 " as " n " and " $2 / 3$ " as " r " and " 4 " as " a_{1} " Thus, the 13th term $=4 \cdot(2 / 3)^{\wedge} 8=\underline{1024}$ 6561
1.) Consider the infinite geometric sequence $25,5,1,0.2, \ldots$
(a) Find the common ratio.
(b) Find
(i) the 10th term;
(ii) an expression for the nth term.
2.) $-11,22,-44,88, \ldots$ Find the 17 th term

17th term $=$ \qquad 11th term $=$ \qquad
4.) Is the following sequence GEOMETRIC or ARITHMETIC (circle one)? -447, -440, -433, -426, -419,

Please explain: \qquad
\qquad
\qquad
\qquad
5.) If the 8th term of a geometric sequence is $\mathbf{- 3 8 4}$ and the first term is 3 , find the common ratio.

Common ratio = \qquad 13th term $=$ \qquad

Answers (show your work!)
1.) a: $1 / 5$; b: 1.28×10^{-5}
2.) $\mathbf{- 7 2 0 , 8 9 6}$
3.) $3 / 512$
4.) Arithmetic
5.) -2
6.) $\mathbf{6 , 9 2 0}, 643,601$

