1.)
(a)
$v=1 \quad \mathrm{~A} 1 \quad \mathrm{~N} 1$
1
(b) (i) $\quad \frac{\mathrm{d}}{\mathrm{d} t}(2 t)=2$
$\frac{\mathrm{d}}{\mathrm{d} t}(\cos 2 t)=-2 \sin 2 t$
Note: Award Al for coefficient 2 and A1 for $-\sin 2 t$.
evidence of considering acceleration $=0$
e.g. $\frac{\mathrm{d} v}{\mathrm{~d} t}=0,2-2 \sin 2 t=0$
correct manipulation
e.g. $\sin 2 k=1, \sin 2 t=1$
$2 k=\frac{\pi}{2}\left(\operatorname{accept} 2 t=\frac{\pi}{2}\right)$
$k=\frac{\pi}{4}$
AG N0
(ii) attempt to substitute $t=\frac{\pi}{4}$ into $v$
e.g. $2\left(\frac{\pi}{4}\right)+\cos \left(\frac{2 \pi}{4}\right)$
$v=\frac{\pi}{2}$
(c)


A1A1A2
Notes: Award Al for y-intercept at (0, 1), Al for curve having zero gradient at $t=\frac{\pi}{4}$, A2 for shape that is concave down to the left of $\frac{\pi}{4}$ and concave up to the right of $\frac{\pi}{4}$. If a correct curve is drawn without indicating $t=\frac{\pi}{4}$, do not award the second A1 for the zero gradient, but award the final A2 if appropriate. Sketch need not be drawn to scale. Only essential features need to be clear.
(d)
(i) correct expression A2
e.g. $\int_{0}^{1}(2 t+\cos 2 t) \mathrm{d} t,\left[t^{2}+\frac{\sin 2 t}{2}\right]_{0}^{1}, 1+\frac{\sin 2}{2}, \int_{0}^{1} v \mathrm{~d} t$
(ii)


A1 3
Note: The line at $t=1$ needs to be clearly after $t=\frac{\pi}{4}$.
2.) (a) $\quad f(1)=2(\mathrm{~A} 1)$
$f^{\prime}(x)=4 x \quad \mathrm{~A} 1$
evidence of finding the gradient of $f$ at $x=1 \quad$ M1
e.g. substituting $x=1$ into $f^{\prime}(x)$
finding gradient of $f$ at $x=1$ A1
e.g. $f^{\prime}(1)=4$
evidence of finding equation of the line M1
e.g. $y-2=4(x-1), 2=4(1)+b$
$y=4 x-2 \quad \mathrm{AG}$
N05
(b) appropriate approach
e.g. $4 x-2=0$
$x=\frac{1}{2}$
A1 N22
(c) (i) bottom limit $x=0$ (seen anywhere)
approach involving subtraction of integrals/areas
e.g. $\int f(x)$ - area of triangle, $\int f-\oint$
correct expression
A2 N4
e.g. $\int_{0}^{1} 2 x^{2} \mathrm{~d} x-\int_{0.5}^{1}(4 x-2) \mathrm{d} x, \int_{0}^{1} f(x) \mathrm{d} x-\frac{1}{2}, \int_{0}^{0.5} 2 x^{2} \mathrm{~d} x+\int_{0.5}^{1} f(x)-(4 x-2) \mathrm{d} x$
(ii) METHOD 1 (using only integrals)
correct integration
(A1)(A1)(A1)
$\int 2 x^{2} \mathrm{~d} x=\frac{2 x^{3}}{3}, \int(4 x-2) \mathrm{d} x=2 x^{2}-2 x$
substitution of limits
e.g. $\frac{1}{12}+\frac{2}{3}-2+2-\left(\frac{1}{12}-\frac{1}{2}+1\right)$
area $=\frac{1}{6}$
A1 N4
METHOD 2 (using integral and triangle)
area of triangle $=\frac{1}{2}$
correct integration
$\int 2 x^{2} \mathrm{~d} x=\frac{2 x^{3}}{3}$
substitution of limits
e.g. $\frac{2}{3}(1)^{3}-\frac{2}{3}(0)^{3}, \frac{2}{3}-0$
correct simplification
e.g. $\frac{2}{3}-\frac{1}{2}$
area $=\frac{1}{6}$
3.) evidence of finding intersection points (M1)
e.g. $f(x)=g(x), \cos x^{2}=\mathrm{e}^{x}$, sketch showing intersection
$x=-1.11, x=0$ (may be seen as limits in the integral)
A1A1
evidence of approach involving integration and subtraction (in any order)(M1)
e.g. $\int_{-1.11}^{0} \cos x^{2}-\mathrm{e}^{x}, \int\left(\cos x^{2}-\mathrm{e}^{x}\right) \mathrm{d} x, \int g-f$
area $=0.282 \quad$ A2 N 3
4.)

## METHOD 1

evidence of antidifferentiation
e.g. $\left(10 \mathrm{e}^{2 x}-5\right) \mathrm{d} x$
$y=5 \mathrm{e}^{2 x}-5 x+C$ A2A1
Note: Award A2 for $5 e^{2 x}$, A1 for $-5 x$. If " $C$ " is omitted, award no further marks.
substituting $(0,8)$
e.g. $8=5+C$
$C=3\left(y=5 \mathrm{e}^{2 x}-5 x+3\right)$
substituting $x=1$
$y=34.9\left(5 \mathrm{e}^{2}-2\right)$

## METHOD 2

evidence of definite integral function expression
e.g. $\int_{\mathrm{a}}^{x} f^{\prime}(t) \mathrm{d} t=f(x)-f(a), \int_{0}^{x}\left(10 \mathrm{e}^{2 x}-5\right)$
initial condition in definite integral function expression
e.g. $\int_{0}^{x}\left(10 \mathrm{e}^{2 t}-5\right) \mathrm{d} t=y-8, \int_{0}^{x}\left(10 \mathrm{e}^{2 x}-5\right) \mathrm{d} x+8$
correct definite integral expression for $y$ when $x=1$
e.g. $\int_{0}^{1}\left(10 \mathrm{e}^{2 x}-5\right) \mathrm{d} x+8$
$y=34.9\left(5 \mathrm{e}^{2}-2\right)$
5.)
attempt to set up integral expression M1
e.g. $\pi \int{\sqrt{16-4 x^{2}}}^{2} \mathrm{~d} x, 2 \pi \int_{0}^{2}\left(16-4 x^{2}\right), \int{\sqrt{16-4 x^{2}}}^{2} \mathrm{~d} x$
$\int 16 \mathrm{~d} x=16 x, \int 4 x^{2} \mathrm{~d} x=\frac{4 x^{3}}{3}$ (seen anywhere) A1A1
evidence of substituting limits into the integrand
e.g. $\left(32-\frac{32}{3}\right)-\left(-32+\frac{32}{3}\right), 64-\frac{64}{3}$
volume $=\frac{128 \pi}{3}$
6.) (a) substituting into the second derivative M1
e.g. $3 \times\left(-\frac{4}{3}\right)-1$
$f^{\prime \prime}\left(-\frac{4}{3}\right)=-5 \quad \mathrm{~A} 1$
since the second derivative is negative, $B$ is a maximum R1 N0
(b) setting $f(x)$ equal to zero
evidence of substituting $x=2\left(\right.$ or $\left.x=-\frac{4}{3}\right)$
(M1)
e.g. $f^{\prime}(2)$
correct substitution
e.g. $\frac{3}{2}(2)^{2}-2+p, \frac{3}{2}\left(-\frac{4}{3}\right)^{2}-\left(-\frac{4}{3}\right)+p$
correct simplification
e.g. $6-2+p=0, \frac{8}{3}+\frac{4}{3}+p=0,4+p=0$ $p=-4$
(c) evidence of integration
$f(x)=\frac{1}{2} x^{3}-\frac{1}{2} x^{2}-4 x+c$
substituting $(2,4)$ or $\left(-\frac{4}{3}, \frac{358}{27}\right)$ into their expression
correct equation
e.g. $\frac{1}{2} \times 2^{3}-\frac{1}{2} \times 2^{2}-4 \times 2+c=4, \frac{1}{2} \times 8-\frac{1}{2} \times 4-4 \times 2+c=4,4-2-8+c=4$
$f(x)=\frac{1}{2} x^{3}-\frac{1}{2} x^{2}-4 x+10$
7.) (a) (i) $\quad \sin x=0 \quad$ A1
$x=0, x=\pi \quad$ A1A1 N 2
(ii) $\quad \sin x=-1$

A1

$$
x=\frac{3 \pi}{2}
$$

e.g. $\int_{0}^{\frac{3 \pi}{2}}(6+6 \sin x) \mathrm{d} x$
correct integral $6 x-6 \cos x$ (seen anywhere)
e.g. $6\left(\frac{3 \pi}{2}\right)-6 \cos \left(\frac{3 \pi}{2}\right)-(-6 \cos 0), 9 \pi-0+6$
$k=9 \pi+6$
A1A1N3
(d) translation of $\binom{\frac{\pi}{2}}{0}$

A1A1N2
(e) recognizing that the area under $g$ is the same as the shaded region in $f$
$p=\frac{\pi}{2}, p=0$
A1A1N3
8.) evidence of integrating the acceleration function
e.g. $\int\left(\frac{1}{t}+3 \sin 2 t\right) \mathrm{d} t$
correct expression $\ln t-\frac{3}{2} \cos 2 t+c \quad \mathrm{~A} 1 \mathrm{~A} 1$
evidence of substituting ( 1,0 ) (M1)
e.g. $0=\ln 1-\frac{3}{2} \cos 2+c$
$c=-0.624\left(=\frac{3}{2} \cos 2-\ln 1\right.$ or $\left.\frac{3}{2} \cos 2\right)$ (A1)
$v=\ln t-\frac{3}{2} \cos 2 t-0.624\left(=\ln t-\frac{3}{2} \cos 2 t+\frac{3}{2} \cos 2\right.$ or $\left.\ln t-\frac{3}{2} \cos 2 t+\frac{3}{2} \cos 2-\ln 1\right)$
$v(5)=2.24$ (accept the exact answer $\ln 5-1.5 \cos 10+1.5 \cos 2) \quad$ A1 N3
9.) (a) substituting $(0,13)$ into function M1 e.g. $13=A \mathrm{e}^{0}+3$
$13=A+3 \mathrm{~A} 1$
$A=10 \quad$ AG $\quad$ N0
(b) substituting into $f(15)=3.49$
e.g. $3.49=10 \mathrm{e}^{15 k}+3,0.049=\mathrm{e}^{15 k}$
evidence of solving equation
e.g. sketch, using ln
$k=-0.201\left(\operatorname{accept} \frac{\ln 0.049}{15}\right)$
(c)


Note: Award Al for $10 e^{-0.201 x}$, Al for $\times-0.201$, Al for the derivative of 3 is zero.
(ii) valid reason with reference to derivative R1N1
e.g. $f(x)<0$, derivative always negative
(iii) $y=3$
10.) (a) 2.31 A1 N 1
(b)
(i)
1.02 A1 N1
(ii) 2.59
(c) $\int_{p}^{q} f(x) \mathrm{d} x=9.96$
split into two regions, make the area below the $x$-axis positive
R1R1N2
$=-\frac{1}{2} \cos (2 x-3)+C$
substituting initial condition into their expression (even if $C$ is missing) M1

$$
e . g .4=-\frac{1}{2} \cos 0+C
$$

$$
\begin{equation*}
C=4.5 \tag{A1}
\end{equation*}
$$

$$
f(x)=-\frac{1}{2} \cos (2 x-3)+4.5
$$

A1 N5
(Total 6 marks)
12.) (a) (i) substitute into gradient $=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$
e.g. $\frac{f(a)-0}{a-\frac{2}{3}}$
substituting $f(a)=a^{3}$
e.g. $\frac{a^{3}-0}{a-\frac{2}{3}} \quad \mathrm{~A} 1$
gradient $=\frac{a^{3}}{a-\frac{2}{3}}$
AGN0

A1N1
e.g. $3 a^{2}, f(a)=3, f(a)=\frac{a^{3}}{a-\frac{2}{3}}$
(iii) METHOD 1
evidence of approach
e.g. $f(a)=$ gradient, $3 a^{2}=\frac{a^{3}}{a-\frac{2}{3}}$
simplify
e.g. $3 a^{2}\left(a-\frac{2}{3}\right)=a^{3}$
rearrange
e.g. $3 a^{3}-2 a^{2}=a^{3}$
evidence of solving
e.g. $2 a^{3}-2 a^{2}=2 a^{2}(a-1)=0$
$a=1$
AGN0

METHOD 2

$$
\begin{equation*}
\text { gradient } \mathrm{RQ}=\frac{-8}{-2-\frac{2}{3}} \tag{A1}
\end{equation*}
$$

simplify
e.g. $\frac{-8}{-\frac{8}{3}}, 3$
evidence of approach
e.g. $f(a)=$ gradient, $3 a^{2}=\frac{-8}{-2-\frac{2}{3}}, \frac{a^{3}}{a-\frac{2}{3}}=3$
simplify
e.g. $3 a^{2}=3, a^{2}=1$
$a=1$
(b) approach to find area of $T$ involving subtraction and integrals
e.g. $\int f-(3 x-2) \mathrm{d} x, \int_{-2}^{k}(3 x-2)-\int_{-2}^{k} x^{3}, \int\left(x^{3}-3 x+2\right)$
correct integration with correct signs
e.g. $\frac{1}{4} x^{4}-\frac{3}{2} x^{2}+2 x, \frac{3}{2} x^{2}-2 x-\frac{1}{4} x^{4}$
correct limits -2 and $k$ (seen anywhere)
e.g. $\int_{-2}^{k}\left(x^{3}-3 x+2\right) \mathrm{d} x,\left[\frac{1}{4} x^{4}-\frac{3}{2} x^{2}+2 x\right]_{-2}^{k}$
attempt to substitute $k$ and -2
correct substitution into their integral if 2 or more terms
e.g. $\left(\frac{1}{4} k^{4}-\frac{3}{2} k^{2}+2 k\right)-(4-6-4)$
setting their integral expression equal to $2 k+4$ (seen anywhere)
simplifying
e.g. $\frac{1}{4} k^{4}-\frac{3}{2} k^{2}+2=0$
$k^{4}-6 k^{2}+8=0$
AGN0


Note: Award A1 for approximately correct shape, A1 for right endpoint at $(25,0)$ and Al for maximum point in circle.
(b) (i) recognizing that $d$ is the area under the curve (M1) e.g. $\int v(t)$
correct expression in terms of $t$, with correct limits
e.g. $d=\int_{0}^{9}(15 \sqrt{t}-3 t) \mathrm{d} t, d=\int_{0}^{9} v \mathrm{~d} t$
(ii) $d=148.5(\mathrm{~m})($ accept 149 to 3 sf$)$

## A1N1

14.) (a) evidence of valid approach (M1)
e.g. $f(x)=0$, graph
$a=-1.73, b=1.73(a=-\sqrt{3}, b=\sqrt{3})$ A1A1 N3
(b) attempt to find max
e.g. setting $f(x)=0$, graph
$c=1.15(\operatorname{accept}(1.15,1.13))$
A1N2
(c) attempt to substitute either limits or the function into formula
e.g. $V=\pi \int_{0}^{c}[f(x)]^{2} \mathrm{~d} x, \pi \int\left[x \ln \left(4-x^{2}\right)\right]^{2}, \pi \int_{0}^{1.149 \ldots} y^{2} \mathrm{~d} x$
$V=2.16$
A2N2
(d) valid approach recognizing 2 regions
$e . g$. finding 2 areas
correct working
e.g. $\int_{0}^{-1.73 \ldots} f(x) \mathrm{d} x+\int_{0}^{1.149 \ldots} f(x) \mathrm{d} x ;-\int_{-1.73 \ldots}^{0} f(x) \mathrm{d} x+\int_{0}^{1.149 \ldots} f(x) \mathrm{d} x$ area $=2.07$ (accept 2.06)
15.) attempt to substitute into formula $V=\int \pi y^{2} \mathrm{~d} x \quad$ (M1)
integral expression A1
e.g. $\pi \int_{0}^{a}(\sqrt{x})^{2} d x, \pi \int x$
correct integration
e.g. $\int x \mathrm{~d} x=\frac{1}{2} x^{2}$
correct substitution $V=\pi\left[\frac{1}{2} a^{2}\right]$
equating their expression to $32 \pi$
e.g. $\pi\left[\frac{1}{2} a^{2}\right]=32 \pi$
$a^{2}=64$
$a=8 \quad$ A2
N2
16.) (a) METHOD 1
evidence of substituting $-x$ for $x$
$f(-x)=\frac{a(-x)}{(-x)^{2}+1}$
$f(-x)=\frac{-a x}{x^{2}+1}(=-f(x))$

## METHOD 2

$y=-f(x)$ is reflection of $y=f(x)$ in $x$ axis and $y=f(-x)$ is reflection of $y=f(x)$ in $y$ axis
sketch showing these are the same

$$
f(-x)=\frac{-a x}{x^{2}+1}(=-f(x))
$$

(b) evidence of appropriate approach
e.g. $f^{\prime \prime}(x)=0$
to set the numerator equal to 0
e.g. $2 a x\left(x^{2}-3\right)=0 ;\left(x^{2}-3\right)=0$
$(0,0),\left(\sqrt{3}, \frac{a \sqrt{3}}{4}\right),\left(-\sqrt{3},-\frac{a \sqrt{3}}{4}\right)($ accept $x=0, y=0$ etc. $)$
(c)
(i) correct expression A2
e.g. $\left[\frac{a}{2} \ln \left(x^{2}+1\right)\right]_{3}^{7}, \frac{a}{2} \ln 50-\frac{a}{2} \ln 10, \frac{a}{2}(\ln 50-\ln 10)$
area $=\frac{a}{2} \ln 5$
A1A1 N2
(ii) METHOD 1
recognizing that the shift does not change the area
e.g. $\int_{4}^{8} f(x-1) d x=\int_{3}^{7} f(x) \mathrm{d} x, \frac{a}{2} \ln 5$
recognizing that the factor of 2 doubles the area
e.g. $\int_{4}^{8} 2 f(x-1) \mathrm{d} x=2 \int_{4}^{8} f(x-1) \mathrm{d} x \quad\left(=2 \int_{3}^{7} f(x) \mathrm{d} x\right)$
$\int_{4}^{8} 2 f(x-1) \mathrm{d} x=a \ln 5$ (i.e. $2 \times$ their answer to (c)(i))

## METHOD 2

changing variable
let $w=x-1$, so $\frac{\mathrm{d} w}{\mathrm{~d} x}=1$
$2 \int f(w) \mathrm{d} w=\frac{2 a}{2} \ln \left(w^{2}+1\right)+c$
substituting correct limits
e.g. $\left[a \ln \left[(x-1)^{2}+1\right]_{4}^{]_{4}^{8}},\left[a \ln \left(w^{2}+1\right)\right]_{3}^{7}, a \ln 50-a \ln 10\right.$
$\int_{4}^{8} 2 f(x-1) \mathrm{d} x=a \ln 5$
17.) Note: In this question, do not penalize absence of units.
(a)
(i)

$$
s=\int(40-a t) \mathrm{d} t \quad(\mathrm{M} 1)
$$

$s=40 t-\frac{1}{2} a t^{2}+c$
(A1)(A1)
substituting $s=100$ when $t=0(c=100)$
$s=40 t-\frac{1}{2} a t^{2}+100$
(ii) $s=40 t-\frac{1}{2} a t^{2}$
(b)
(i) stops at station, so $v=0$ (M1) $t=\frac{40}{a}$ (seconds)
A1 N2
(ii) evidence of choosing formula for $s$ from (a) (ii)
substituting $t=\frac{40}{a}$
e.g. $40 \times \frac{40}{a}-\frac{1}{2} a \times \frac{40^{2}}{a^{2}}$
setting up equation
e.g. $500=s, 500=40 \times \frac{40}{a}-\frac{1}{2} a \times \frac{40^{2}}{a^{2}}, 500=\frac{1600}{a}-\frac{800}{a}$
evidence of simplification to an expression which obviously
leads to $a=\frac{8}{5}$
e.g. $500 a=800,5=\frac{8}{a}, 1000 a=3200-1600$
$a=\frac{8}{5}$
(c) METHOD 1
$v=40-4 t$, stops when $v=0$
$40-4 t=0$
$t=10$
substituting into expression for $s$
$s=40 \times 10-\frac{1}{2} \times 4 \times 10^{2}$
$s=200$
A1
since $200<500$ (allow $\boldsymbol{F T}$ on their $s$, if $s<500$ )
train stops before the station
AGN0

## METHOD 2

from (b) $t=\frac{40}{4}=10$
substituting into expression for $s$
e.g. $s=40 \times 10-\frac{1}{2} \times 4 \times 10^{2}$ M1
$s=200$
since $200<500$,
train stops before the station

## METHOD 3

$a$ is deceleration A2
$4>\frac{8}{5}$
so stops in shorter time
so less distance travelled
so stops before station
18.) (a) finding the limits $x=0, x=5 \quad$ (A1) integral expression

A1
e.g. $\int_{0}^{5} f(x) \mathrm{d} x$
area $=52.1 \quad$ A1 $\quad \mathrm{N} 2$
(b) evidence of using formula $v=\int \pi y^{2} \mathrm{~d} x$ correct expression
e.g. volume $=\pi \int_{0}^{5} x^{2}(x-5)^{4} \mathrm{~d} x$
volume $=2340$
(c) area is $\int_{0}^{a} x(a-x) \mathrm{d} x$

## A1

$=\left[\frac{a x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{a}$
substituting limits
e.g. $\frac{a^{3}}{2}-\frac{a^{3}}{3}$
setting expression equal to area of $R$
19.) (a) finding derivative (A1)
e.g. $f(x)=\frac{1}{2} x^{-\frac{1}{2}}, \frac{1}{2 \sqrt{x}}$
correct value of derivative or its negative reciprocal (seen anywhere)
e.g. $-\frac{1}{f^{\prime}(4)}=-4,-2 \sqrt{x}$
substituting into equation of line (for normal)
e.g. $y-2=-4(x-4)$
$y=-4 x+18$
AGN0
(b) recognition that $y=0$ at A
e.g. $-4 x+18=0$
$x=\frac{18}{4}\left(=\frac{9}{2}\right)$
(c) splitting into two appropriate parts (areas and/or integrals)
correct expression for area of $R$
$e . g$. area of $R=\int_{0}^{4} \sqrt{x} \mathrm{~d} x+\int_{4}^{4.5}(-4 x+18) \mathrm{d} x, \int_{0}^{4} \sqrt{x} \mathrm{~d} x+\frac{1}{2} \times 0.5 \times 2$ (triangle)
Note: Award Al if $d x$ is missing.
(d) correct expression for the volume from $x=0$ to $x=4$
e.g. $V=\int_{0}^{4} \pi\left[f(x)^{2}\right] \mathrm{d} x, \int_{0}^{4} \pi \sqrt{x}^{2} \mathrm{~d} x, \int_{0}^{4} \pi x \mathrm{~d} x$
$V=\left[\frac{1}{2} \pi x^{2}\right]_{0}^{4}$
$V=\pi\left(\frac{1}{2} \times 16-\frac{1}{2} \times 0\right)$
$V=8 \pi$
finding the volume from $x=4$ to $x=4.5$

## EITHER

recognizing a cone
e.g. $V=\frac{1}{3} \pi r^{2} h$
$V=\frac{1}{3} \pi(2)^{2} \times \frac{1}{2}$
$=\frac{2 \pi}{3}$
total volume is $8 \pi+\frac{2}{3} \pi \quad\left(=\frac{26}{3} \pi\right)$
OR
$V=\pi \int_{4}^{4.5}(-4 x+18)^{2} \mathrm{~d} x$
$=\int_{4}^{4.5} \pi\left(16 x^{2}-144 x+324\right) \mathrm{d} x$
$=\pi\left[\frac{16}{3} x^{3}-72 x^{2}+324 x\right]_{4}^{4.5}$
$=\frac{2 \pi}{3}$
total volume is $8 \pi+\frac{2}{3} \pi \quad\left(=\frac{26}{3} \pi\right)$
20.) (a)


A1A1A1

## Note: Award Al for f being of sinusoidal shape, with 2 maxima and one minimum, A1 for g being a parabola opening down, Al for two intersection points in approximately correct position.

(b)
(i)
$(2,0)(\operatorname{accept} x=2)$
A1 N1
(ii) $\quad$ period $=8$
(iii) amplitude $=5$
(c)
(i)
$(2,0),(8,0)($ accept $x=2, x=8)$ A1A1 N1N1
(ii) $x=5$ (must be an equation)
(d) METHOD 1
intersect when $x=2$ and $x=6.79$ (may be seen as limits of integration)
evidence of approach
e.g. $\int g-f, \int f(x) \mathrm{d} x-\int g(x) \mathrm{d} x, \int_{2}^{6.79}\left(\left(-0.5 x^{2}+5 x-8-\left(5 \cos \frac{\pi}{4} x\right)\right)\right.$
area $=27.6$

## METHOD 2

intersect when $x=2$ and $x=6.79$ (seen anywhere)
evidence of approach using a sketch of $g$ and $f$, or $g-f$.

e.g. area $A+B-C, 12.7324+16.0938-1.18129 \ldots$
area $=27.6$
A2N3
21.) (a)

$$
\int \frac{1}{2 x+3} \mathrm{~d} x=\frac{1}{2} \ln (2 x+3)+C\left(\text { accept } \frac{1}{2} \ln |(2 x+3)|+C\right)
$$

A1A1 N2
(b) $\quad \int_{0}^{3} \frac{1}{2 x+3} \mathrm{~d} x=\left[\frac{1}{2} \ln (2 x+3)\right]_{0}^{3}$
evidence of substitution of limits
e.g. $\frac{1}{2} \ln 9-\frac{1}{2} \ln 3$
evidence of correctly using $\ln a-\ln b=\ln \frac{a}{b}$ (seen anywhere)
e.g. $\frac{1}{2} \ln 3$
evidence of correctly using $a \ln b=\ln b^{a}$ (seen anywhere)
e.g. $\ln \sqrt{\frac{9}{3}}$
$P=3 \quad$ (accept $\ln \sqrt{3}$ )
22.) evidence of anti-differentiation (M1)
e.g. $s=\int\left(6 \mathrm{e}^{3 x}+4\right) \mathrm{d} x$
$s=2 \mathrm{e}^{3 t}+4 t+C$
substituting $t=0$,
$7=2+C$
$C=5$
$s=2 \mathrm{e}^{3 t}+4 t+5$
A1 N3
23.) (a) evidence of factorizing 3/division by 3 A1
e.g. $\int_{1}^{5} 3 f(x) \mathrm{d} x=3 \int_{1}^{5} f(x) \mathrm{d} x, \frac{12}{3}, \int_{1}^{5} \frac{3 f(x) \mathrm{d} x}{3}$
(do not accept 4 as this is show that)
evidence of stating that reversing the limits changes the sign
e.g. $\int_{5}^{1} f(x) \mathrm{d} x=-\int_{1}^{5} f(x) \mathrm{d} x$
$\int_{5}^{1} f(x) \mathrm{d} x=-4$
AG N0
(b) evidence of correctly combining the integrals (seen anywhere)
e.g. $I=\int_{1}^{2}(x+f(x)) \mathrm{d} x+\int_{2}^{5}(x+f(x)) \mathrm{d} x=\int_{1}^{5}(x+f(x)) \mathrm{d} x$
evidence of correctly splitting the integrals (seen anywhere)
e.g. $I=\int_{1}^{5} x \mathrm{~d} x+\int_{1}^{5} f(x) \mathrm{d} x$
$\int x \mathrm{~d} x=\frac{x^{2}}{2} \quad$ (seen anywhere)
$\int_{1}^{5} x \mathrm{~d} x=\left[\frac{x^{2}}{2}\right]_{1}^{5}=\frac{25}{2}-\frac{1}{2}\left(=\frac{24}{2}, 12\right)$
$I=16$
A1 N3
[7]
24.) (a)
(i) range of $f$ is $[-1,1],(-1 \leq f(x) \leq 1)$

A2 N2
(ii) $\begin{aligned} & \sin ^{3} x=1 \Rightarrow \sin x=1 \\ & \text { justification for one solution on }[0,2 \pi] \\ & \\ & \text { e.g. } x=\frac{\pi}{2}, \text { unit circle, sketch of } \sin x\end{aligned}$

1 solution (seen anywhere)
A1 N1
(b) $f^{\prime}(x)=3 \sin ^{2} x \cos x$

A2 N 2
(c) using $V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$

$$
\begin{align*}
V & =\int_{0}^{\frac{\pi}{2}} \pi\left(\sqrt{3} \sin x \cos ^{\frac{1}{2}} x\right)^{2} \mathrm{~d} x  \tag{A1}\\
& =\pi \int_{0}^{\frac{\pi}{2}} 3 \sin ^{2} x \cos x \mathrm{~d} x  \tag{A1}\\
V & =\pi\left[\sin ^{3} x\right]_{0}^{\frac{\pi}{2}}\left(=\pi\left(\sin ^{3}\left(\frac{\pi}{2}\right)-\sin ^{3} 0\right)\right) \tag{A2}
\end{align*}
$$

evidence of using $\sin \frac{\pi}{2}=1$ and $\sin 0=0$
e.g. $\quad \pi(1-0)$

$$
V=\pi
$$

25.) (a) (i) intersection points $x=3.77, x=8.30$ (may be seen as the limits) (A1)(A1)
approach involving subtraction and integrals
fully correct expression
e.g. $\int_{3.77}^{8.30}((-4 \cos (0.5 x)+2)-(\ln (3 x-2)+1)) \mathrm{d} x$,

$$
\int_{3.77}^{8.30} g(x) \mathrm{d} x-\int_{3.77}^{8.30} f(x) \mathrm{d} x
$$

(ii) $\quad A=6.46$
(b)
(i)
$f^{\prime}(x)=\frac{3}{3 x-2} \mathrm{~A} 1 \mathrm{~A} 1$
N2
Note: Award Al for numerator (3), Al for denominator $(3 x \quad 2)$, but penalize 1 mark for additional terms.
(ii) $\quad g^{\prime}(x)=2 \sin (0.5 x)$

A1A1 N2
Note: Award A1 for 2, Al for $\sin (0.5 x)$, but penalize 1 mark for additional terms.
(c) evidence of using derivatives for gradients
correct approach
e.g. $f^{\prime}(x)=\mathrm{g}^{\prime}(x)$, points of intersection
$x=1.43, x=6.10$
A1A1N2N2
26.) (a) evidence of using the product rule M1

$$
f^{\prime}(x)=\mathrm{e}^{x}\left(1-x^{2}\right)+\mathrm{e}^{x}(-2 x) \quad \text { A1A1 }
$$

Note: Award A1 for $e^{x}\left(1 \quad x^{2}\right)$, Al for $e^{x}(2 x)$.

$$
f^{\prime}(x)=\mathrm{e}^{x}\left(1-2 x-x^{2}\right)
$$

(b) $y=0$
(c) at the local maximum or minimum point
$f^{\prime}(x)=0 \quad\left(\mathrm{e}^{x}\left(1-2 x-x^{2}\right)=0\right)$
$\Rightarrow 1-2 x-x^{2}=0$
$r=-2.41 s=0.414$
A1A1N2N2
(d) $\quad f^{\prime}(0)=1$ A1
gradient of the normal $=-1$
evidence of substituting into an equation for a straight line
correct substitution
e.g. $y-1=-1(x-0), y-1=-x, y=-x+1$
$x+y=1$
AG N0
(e) (i)intersection points at $x=0$ and $x=1$ (may be seen as the limits) (A1) approach involving subtraction and integrals (M1)
fully correct expression
e.g. $\int_{0}^{1}\left(\mathrm{e}^{x}\left(1-x^{2}\right)-(1-x)\right) \mathrm{d} x, \int_{0}^{1} f(x) d x-\int_{0}^{1}(1-x) \mathrm{d} x$
(ii) area $R=0.5$

A1 N1
27.) (a) substituting $t=0$
e.g. $a(0)=0+\cos 0$
$a(0)=1 \quad$ A1 N 2
(b) evidence of integrating the acceleration function
e.g. $\int(2 t+\cos t) \mathrm{d} t$
correct expression $t^{2}+\sin t+c$
A1A1
Note: If " $+c$ " is omitted, award no further marks.
evidence of substituting $(0,2)$ into indefinite integral
e.g. $2=0+\sin 0+c, c=2$
$v(t)=t^{2}+\sin t+2$
A1 N3
(c) $\int\left(t^{2}+\sin t+2\right) \mathrm{d} t=\frac{t^{3}}{3}-\cos t+2 t$

A1A1A1
Note: Award Al for each correct term.
evidence of using $v(3)-v(0)$
correct substitution
A1
e.g. $(9-\cos 3+6)-(0-\cos 0+0),(15-\cos 3)-(-1)$ $16-\cos 3$ (accept $p=16, q=-1$ )

A1A1 N3
(d) reference to motion, reference to first 3 seconds
$e . g$. displacement in 3 seconds, distance travelled in 3 seconds
28.) (a)


A1A2 N3
Notes: Award A1 for correct domain, $0 \leq x \leq 3$.
Award A2 for approximately correct shape, with local maximum in circle 1 and right endpoint in circle 2.
(b) $\quad a=2.31$
(c) evidence of using $V=\pi \int[f(x)]^{2} \mathrm{~d} x$
fully correct integral expression
e.g. $V=\pi \int_{0}^{2.31}[x \cos (x-\sin x)]^{2} \mathrm{~d} x, V=\pi \int_{0}^{2.31}[f(x)]^{2} \mathrm{~d} x$
$V=5.90$
A1 N 2
[8]
29.)
(a) correctly finding the derivative of $\mathrm{e}^{2 x}$, i.e. $2 \mathrm{e}^{2 x}$
correctly finding the derivative of $\cos x$, i.e. $-\sin x \quad$ A1
evidence of using the product rule, seen anywhere
M1
e.g. $f(x)=2 \mathrm{e}^{2 x} \cos x-\mathrm{e}^{2 x} \sin x$
$f(x)=\mathrm{e}^{2 x}(2 \cos x-\sin x) \quad$ AG N 0
(b) evidence of finding $f(0)=1$, seen anywhere
attempt to find the gradient of $f$
e.g. substituting $x=0$ into $f^{\prime}(x)$
value of the gradient of $f$
e.g. $f(0)=2$, equation of tangent is $y=2 x+1$
gradient of normal $=-\frac{1}{2}$
$y-1=-\frac{1}{2} x \quad\left(y=-\frac{1}{2} x+1\right)$
(c)
(i) evidence of equating correct functions
e.g. $\mathrm{e}^{2 x} \cos x=-\frac{1}{2} x+1$, sketch showing intersection of graphs
$x=1.56 \quad$ A1 N1
(ii) evidence of approach involving subtraction of integrals/areas
e.g. $\int\left[f(x)-g(x) \mathrm{d} x, \int f(x) \mathrm{d} x-\right.$ area under trapezium fully correct integral expression
e.g. $\int_{0}^{1.56}\left[\mathrm{e}^{2 x} \cos x-\left(-\frac{1}{2} x+1\right)\right] \mathrm{d} x, \int_{0}^{1.56} \mathrm{e}^{2 x} \cos x \mathrm{~d} x-0.951 \ldots$
area $=3.28$
A1 N 2
30.)

$$
\begin{aligned}
& \text { (a) } \quad \int_{1}^{2}\left(3 x^{2}-2\right) \mathrm{d} x=\left[x^{3}-2 x\right]_{1}^{2} \quad \mathrm{~A} 1 \mathrm{~A} 1 \\
& =(8-4)-(1-2) \quad \text { (A1) } \\
& =5 \quad \text { A1 } \quad \mathrm{N} 2
\end{aligned}
$$

(b) $\quad \int_{0}^{1} 2 \mathrm{e}^{2 x} \mathrm{~d} x=\left[\mathrm{e}^{2 x}\right]_{0}^{1}$

$$
\begin{align*}
& =e^{2}-e^{0}  \tag{A1}\\
& =e^{2}-1
\end{align*}
$$

31.) (a) $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$ (M1)
$=-10\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \quad$ A1 $\quad \mathrm{N} 2$
(b) $s=\hat{y} \mathrm{~d} t$

$$
=50 t-5 t^{2}+c
$$

$$
40=50(0)-5(0)+c \Rightarrow c=40
$$

$s=50 t-5 t^{2}+40$
Note: Award (M1) and the first A1 in part (b) if c is missing, but do not award the final 2 marks.
32.) (a) period $=\frac{2 \pi}{2}=\pi \quad$ M1A1 N 2
(b) $\quad m=\frac{\pi}{2}$

A2N2

Correct values, $A=-\frac{1}{2}(-1)-\left(-\frac{1}{2}(1)\right) \quad\left(=\frac{1}{2}+\frac{1}{2}\right)$
$A=1$
33.) (a) Using the chain rule (M1)
$f(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \quad$ A1
$f^{\prime}(x)=-(10 \sin (5 x-3)) 5$
$=-50 \sin (5 x-3) \quad$ A1A1 N2
Note: Award Al for $\sin (5 x-3)$, Al for -50 .
(b) $\quad \int f(x) \mathrm{d} x=-\frac{2}{5} \cos (5 x-3)+c$

Note: Award Al for $\cos (5 x-3)$, Al for $-\frac{2}{5}$.
34.) (a) Curve intersects $y$-axis when $x=0$

Gradient of tangent at $y$-intercept $=2 \quad \mathrm{~A} 1$
$\Rightarrow$ gradient of $N=-\frac{1}{2}(=-0.5) \mathrm{A} 1$
Finding $y$-intercept, 2.5 A1
Therefore, equation of $N$ is $y=-0.5 x+2.5 \quad$ AG N0
(b) $\quad N$ intersects curve when $-0.5 x^{2}+2 x+2.5=-0.5 x+2.5$

Solving equation
e.g. sketch, factorising
$\Rightarrow x=0$ or $x=5$
Other point when $x=5$
$x=5 \Rightarrow y=0($ so other point $(5,0))$
(c)


Using appropriate method, with subtraction/correct expression, correct limitsM1A1 e.g. $\int_{0}^{5} f(x) \mathrm{d} x-\int_{0}^{5} g(x) \mathrm{d} x, \int_{0}^{5}\left(-0.5 x^{2}+2.5 x\right) \mathrm{d} x$ Area $=10.4$ A2N2
35.) Evidence of integration (M1)

$$
s=-0.5 \mathrm{e}^{-2 t}+6 t^{2}+c
$$

Substituting $t=0, s=2$
eg $2=-0.5+c$
$c=2.5$
$s=-0.5 \mathrm{e}^{-2 t}+6 t^{2}+2.5$
36.) (a) 10 A1 N1
(b) $\quad \int_{1}^{3} 3 x^{2}+f(x) \mathrm{d} x=\int_{1}^{3} 3 x^{2} \mathrm{~d} x+\int_{1}^{3} f(x) \mathrm{d} x$

$$
\begin{align*}
\int_{1}^{3} 3 x^{2} \mathrm{~d} x & =\left[x^{3}\right]_{1}^{3}=27-1  \tag{A1}\\
& =26 \text { (may be seen later) }
\end{align*}
$$

A1
Splitting the integral (seen anywhere)
e.g. $\int 3 x^{2} \mathrm{~d} x+\int f(x) \mathrm{d} x$

Using $\int_{1}^{3} f(x) \mathrm{d} x=5$
$e g \int_{1}^{3} 3 x^{2}+f(x) \mathrm{d} x=26+5$

$$
\int_{1}^{3} 3 x^{2}+f(x) \mathrm{d} x=31
$$

37.) $\quad f(x)=\int\left(12 x^{2}-2\right) \mathrm{d} x \quad$ (M1)

$$
\begin{equation*}
f(x)=4 x^{3}-2 x+c \tag{M1}
\end{equation*}
$$

Substituting $x=-1, y=1$
eg $1=4(-1)^{3}-2(-1)+c$

$$
\begin{equation*}
c=3 \tag{A1}
\end{equation*}
$$

$f(x)=4 x^{3}-2 x+3$
38.) (a) $\pi$
(3.14) (accept $(\pi, 0),(3.14,0)) \mathrm{A} 1 \mathrm{~N} 1$
(b)
(i)

For using the product rule (M1)

$$
f^{\prime}(x)=\mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x=\mathrm{e}^{x}(\cos x+\sin x)
$$

A1A1 N3
(ii) At $\mathrm{B}, f^{\prime}(x)=0$
(c) $f^{\prime \prime}(x)=\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x$

$$
=2 \mathrm{e}^{x} \cos x
$$

A1 N1
A1A1
AG N0
(d)
(i) At A, $f^{\prime \prime}(x)=0$
A1 N1
(ii) Evidence of setting up their equation (may be seen in part (d)(i))
eg $2 \mathrm{e}^{x} \cos x=0, \quad \cos x=0$
$x=\frac{\pi}{2}(=1.57), \quad y=\mathrm{e}^{\frac{\pi}{2}}(=4.81)$
Coordinates are $\left(\frac{\pi}{2}, \mathrm{e}^{\frac{\pi}{2}}\right)(1.57,4.81)$
(e)
(i) $\int_{0}^{\pi} \mathrm{e}^{x} \sin x \mathrm{~d} x$ or $\int_{0}^{\pi} f(x) \mathrm{d} x \quad$ A2 $\quad \mathrm{N} 2$
(ii) $\quad$ Area $=12.1$

A2 N2
39.) (a)


A1A1A1 N3
Notes: Award A1 for both asymptotes shown.
The asymptotes need not be labelled.
Award A1 for the left branch in
approximately correct position,
Al for the right branch in
approximately correct position.
(b)
(i)

$$
y=3, x=\frac{5}{2} \text { (must be equations) A1A1 N2 }
$$

(ii) $\quad x=\frac{14}{6}\left(\frac{7}{3}\right.$ or 2.33 , also accept $\left.\left(\frac{14}{6}, 0\right)\right)$

A1 N1
(iii) $y=\frac{14}{6}(y=2.8)\left(\operatorname{accept}\left(0, \frac{14}{5}\right) \operatorname{or}(0,2.8)\right)$

A1 N1
(c)
(i) $\quad \int\left(9+\frac{6}{2 x-5}+\frac{1}{(2 x-5)^{2}}\right) \mathrm{d} x=9 x+$
$3 \ln (2 x-5)-\frac{1}{2(2 x-5)}+C$
A1A1A1
A1A1 N5
(ii) Evidence of using $V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$

Correct expression
$e g \int_{3}^{a} \pi\left(3+\frac{1}{2 x-5}\right)^{2} \mathrm{~d} x, \pi \int_{3}^{a}\left(9+\frac{6}{2 x-5}+\frac{1}{(2 x-5)^{2}}\right) \mathrm{d} x$,
$\left[9 x+3 \ln (2 x-5)-\frac{1}{2(2 x-5)}\right]_{3}^{a}$
Substituting $\left(9 a+3 \ln (2 a-5)-\frac{1}{2(2 a-5)}\right)-\left(27+3 \ln 1-\frac{1}{2}\right)$
Setting up an equation
$9 a-\frac{1}{2(2 a-5)}-27+\frac{1}{2}+3 \ln (2 a-5)-3 \ln 1=\left(\frac{28}{3}+3 \ln 3\right)$
Solving gives $a=4$
A1 N2
40.) (a) (i) $\quad p=2 \quad \mathrm{~A} 1 \quad \mathrm{~N} 1$
(ii) $\quad q=1$

A1 N1
(b)
(i) $\quad f(x)=0$ (M1)
$2-\frac{3 x}{x^{2}-1}=0 \quad\left(2 x^{2}-3 x-2=0\right)$
$x=-\frac{1}{2} x=2$
$\left(-\frac{1}{2}, 0\right)$
A1

A1 N2
(ii) Using $V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$ (limits not required)

$$
\begin{equation*}
V=\int_{\frac{1}{2}} \pi\left(2-\frac{3 x}{x^{2}-1}\right)^{2} \mathrm{~d} x \tag{M1}
\end{equation*}
$$

$$
V=2.52
$$

(c)
(i) Evidence of appropriate method M1
$e g$ Product or quotient rule
Correct derivatives of $3 x$ and $x^{2}-1$
A1A1
Correct substitution
$e g \frac{-3\left(x^{2}-1\right)-(-3 x)(2 x)}{\left(x^{2}-1\right)^{2}}$
$f^{\prime}(x)=\frac{-3 x^{2}+3+6 x^{2}}{\left(x^{2}-1\right)^{2}}$
$f^{\prime}(x)=\frac{3 x^{2}+3}{\left(x^{2}-1\right)^{2}}=\frac{3\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}}$

## (ii) METHOD 1

Evidence of using $f^{\prime}(x)=0$ at max/min
$3\left(x^{2}+1\right)=0\left(3 x^{2}+3=0\right)$
no (real) solution R1

Therefore, no maximum or minimum.
AG N0

## METHOD 2

Evidence of using $f^{\prime}(x)=0$ at max/min
Sketch of $f^{\prime}(x)$ with good asymptotic behaviour
Never crosses the $x$-axis
Therefore, no maximum or minimum. R1

METHOD 3
Evidence of using $f^{\prime}(x)=0$ at max/min
Evidence of considering the sign of $f^{\prime}(x)$
$f^{\prime}(x)$ is an increasing function $\left(f^{\prime}(x)>0\right.$, always) R1

Therefore, no maximum or minimum.
AG
(d) For using integral

Area $=\int_{0}^{a} g(x) \mathrm{d} x\left(\right.$ or $\int_{0}^{a} f^{\prime}(x) \mathrm{d} x$ or $\left.\int_{0}^{a} \frac{3 x^{2}+3}{\left(x^{2}-1\right)^{2}} \mathrm{~d} x\right)$
Recognizing that $\int_{0}^{a} g(x) \mathrm{d} x=f(x){ }_{0}^{a}$
Setting up equation (seen anywhere)
Correct equation
$e g \int_{0}^{a} \frac{3 x^{2}+3}{\left(x^{2}-1\right)^{2}} \mathrm{~d} x=2,\left[2-\frac{3 a}{a^{2}-1}\right]-[2-0]=2,2 a^{2}+3 a-2=0$
$a=\frac{1}{2} \quad a=-2$
$a=\frac{1}{2}$
41.) (a) $\int_{\frac{3 \pi}{2}}^{2 \pi} \cos x \mathrm{~d} x \quad \mathrm{~A} 1 \quad \mathrm{~N} 1$
(b) Area of $\mathrm{A}=1 \quad$ A1 N1
(c) Evidence of attempting to find the area of B
$e g \int_{\frac{4 \pi}{3}}^{\frac{3 \pi}{2}} y \mathrm{~d} x,-0.134$
Evidence of recognising that area B is under the curve/integral is negative

$$
e g-\int_{\frac{4 \pi}{3}}^{\frac{3 \pi}{2}} y \mathrm{~d} x, \int_{\frac{3 \pi}{2}}^{\frac{4 \pi}{3}} \cos x \mathrm{~d} x,\left|\int_{\frac{4 \pi}{3}}^{\frac{3 \pi}{2}} \cos x \mathrm{~d} x\right|
$$

Area of $\mathrm{B}=0.134\left(\right.$ accept $\left.\frac{2-\sqrt{3}}{2}\right)$
Total Area $=1+0.134$

$$
=1.13\left(\operatorname{accept} \frac{4-\sqrt{3}}{2}\right)
$$

42.) (a)

(iii) Valid reason $e g$ reference to area undefined or discontinuity
Note: GDC reason not acceptable.
(i)
$V=\pi \int_{1}^{1.5} f(x)^{2} \mathrm{~d} x$
A2 N 2

R1 N1
(c)
(ii) $\quad V=105 \quad$ (accept $33.3 \pi$ )
(d) $f^{\prime}(x)=2 \mathrm{e}^{2 x-1}-10(2 x-1)^{-2}$
(e)

$$
\text { (i) } \quad x=1.11
$$

(accept $(1.11,7.49))$

## A1A1A1A1 N4

(e) (i) $\quad x=1.11$ (A1 N1
(ii) $\quad p=0, q=7.49 \quad$ (accept $0 \leq k<7.49)$
43.) (a) Attempting to use the formula $V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x$

$$
\text { Volume }=\pi \int_{0}^{2}\left(2 x-x^{2}\right)^{2} \mathrm{~d} x
$$

A2 N3
(b) Volume $=\pi \int_{0}^{2}\left(4 x^{2}-4 x^{3}+x^{4}\right) \mathrm{d} x$

$$
\begin{align*}
& =\pi\left[4 \frac{x^{3}}{3}-4 \frac{x^{4}}{4}+\frac{x^{5}}{5}\right]_{0}^{2}  \tag{A1}\\
& \left.=\frac{16 \pi}{15} \text { or } 3.35 \quad \text { (accept } 1.07 \pi\right)
\end{align*}
$$

44.) (a) (i) $\quad f^{\prime}(x)=-\frac{3}{2} x+1 \quad \mathrm{~A} 1 \mathrm{~A} 1 \quad \mathrm{~N} 2$
(ii) For using the derivative to find the gradient of the tangent

$$
\begin{equation*}
f^{\prime}(2)=-2 \tag{A1}
\end{equation*}
$$

Using negative reciprocal to find the gradient of the normal $\left(\frac{1}{2}\right)$ M1

$$
\left.y-3=\frac{1}{2}(x-2) \quad \text { or } y=\frac{1}{2} x+2\right)
$$

(iii) Equating $-\frac{3}{4} x^{2}+x+4=\frac{1}{2} x+2$ (or sketch of graph)

$$
\begin{gather*}
3 x^{2}-2 x-8=0  \tag{A1}\\
(3 x+4)(\mathrm{x}-2)=0 \\
x=-\frac{4}{3}(=-1.33) \quad\left(\operatorname{accept}\left(-\frac{4}{3}, \frac{4}{3}\right) \text { or } x=-\frac{4}{3}, x=2\right) \quad \text { A1 } \quad \mathrm{N} 2
\end{gather*}
$$

(b) (i)Any completely correct expression (accept absence of $\mathrm{d} x$ ) A2

$$
e g \int_{-1}^{2}\left(-\frac{3}{4} x^{2}+x+4\right) \mathrm{d} x,\left[-\frac{1}{4} x^{3}+\frac{1}{2} x^{2}+4 x\right]_{-1}^{2}
$$

(ii) $\quad$ Area $=\frac{45}{4}(=11.25) \quad$ (accept 11.3)
(iii) Attempting to use the formula for the volume

$$
e g \int_{-1}^{2} \pi\left(-\frac{3}{4} x^{2}+x+4\right) \mathrm{d} x, \pi \int_{-1}^{2}\left(-\frac{3}{4} x^{2}+x+4\right)^{2} \mathrm{~d} x
$$

(c) $\quad \int_{1}^{k} f(x) \mathrm{d} x=\left[-\frac{1}{4} x^{3}+\frac{1}{2} x^{2}+4 x\right]_{1}^{k}$

Note: Award Al for $-\frac{1}{4} x^{3}$, Al for $\frac{1}{2} x^{2}$, Al for $4 x$.
Substituting $\left(-\frac{1}{4} k^{3}+\frac{1}{2} k^{2}+4 k\right)-\left(-\frac{1}{4}+\frac{1}{2}+4\right)$

$$
=-\frac{1}{4} k^{3}+\frac{1}{2} k^{2}+4 k-4.25
$$

A1 N3
45.) (a) METHOD 1

Attempting to interchange $x$ and $y$
Correct expression $x=3 y-5$
$f^{-1}(x)=\frac{x+5}{3}$

## METHOD 2

Attempting to solve for $x$ in terms of $y$
Correct expression $x=\frac{y+5}{3}$
$f^{-1}(x)=\frac{x+5}{3}$
A1 N3
(b) For correct composition $\left(g^{-1} \circ f\right)(x)=(3 x-5)+2$
$\left(g^{-1} \circ f\right)(x)=3 x-3$
A1 N2
(c) $\frac{x+3}{3}=3 x-3(x+3=9 x-9)$

$$
\begin{equation*}
x=\frac{12}{8} \tag{A1}
\end{equation*}
$$

(d)
(i)


A1A1A1 N3
Note: Award A1 for approximately correct x and y intervals, Al for two branches of correct shape, Al for both asymptotes.
(ii) (Vertical asymptote) $x=2$, (Horizontal asymptote) $y=3$ A1A1 N2
(Must be equations)
(e)
(i)
$3 x+\ln (x-2)+C(3 x+\ln |x-2|+C)$
A1A1 N2
(ii) $[3 x+\ln (x-2)]_{3}^{5}$ (M1)
$=(15+\ln 3)-(9+\ln 1)$
$=6+\ln 3$
A1 N2
(f) Correct shading (see graph).
46.) $s=\int v \mathrm{~d} t$ (M1)

$$
s=\frac{1}{2} \mathrm{e}^{2 t-1}+c
$$

Substituting $t=0.5$

$$
\begin{align*}
\frac{1}{2}+c & =10 \\
c & =9.5 \tag{A1}
\end{align*}
$$

Substituting $t=1$

$$
s=\frac{1}{2} \mathrm{e}+9.5(=10.9 \text { to } 3 s . f .)
$$

47.) Using $V=\int \pi y^{2} \mathrm{~d} x \quad$ (M1)

Correctly integrating $\int\left(x^{\frac{1}{2}}\right)^{2} \mathrm{~d} x=\frac{x^{2}}{2}$

$$
\begin{align*}
V & =\pi\left[\frac{x^{2}}{2}\right]_{0}^{a} \\
& =\frac{\pi a^{2}}{2} \tag{A1}
\end{align*}
$$

Setting up their equation $\left(\frac{1}{2} \pi a^{2}=0.845 \pi\right)$

$$
\begin{aligned}
& a^{2}=1.69 \\
& a=1.3
\end{aligned}
$$

48.) (a)


A1A1A1 N3
Note: Award Al for the shape of the curve,
Al for correct domain,
A1 for labelling both points $P$ and $Q$ in approximately correct positions.
(b) (i) Correctly finding derivative of $2 x+1$ ie 2 (A1)

Correctly finding derivative of $\mathrm{e}^{-x}$ ie $-\mathrm{e}^{-x}$
Evidence of using the product rule

$$
\begin{align*}
f^{\prime}(x) & =2 \mathrm{e}^{-x}+(2 x+1)\left(-\mathrm{e}^{-x}\right)  \tag{M1}\\
& =(1-2 x) \mathrm{e}^{-x} \tag{M1}
\end{align*}
$$

(ii) At $\mathbf{Q}, f^{\prime}(x)=0$
$x=0.5, y=2 \mathrm{e}^{-0.5}$

$$
\mathbf{Q} \text { is }\left(0.5,2 \mathrm{e}^{-0.5}\right)
$$

(c) $1 \leq k<2 \mathrm{e}^{-0.5}$
(d) Using $f^{\prime \prime}(x)=0$ at the point of inflexion
$\mathrm{e}^{-x}(-3+2 x)=0$
This equation has only one root.
So $f$ has only one point of inflexion.
AG N0
(e) At R, $y=7 \mathrm{e}^{-3}(=0.34850 \ldots)$

Gradient of $(\mathrm{PR})$ is $\frac{7 \mathrm{e}^{-3}-1}{3}(=-0.2172)$
Equation of $(\mathrm{PR})$ is $g(x)=\left(\frac{7 \mathrm{e}^{-3}-1}{3}\right) x+1(=-0.2172 x+1)$
Evidence of appropriate method, involving subtraction of integrals or areas
Correct limits/endpoints
$e g \int_{0}^{3}(f(x)-g(x)) \mathrm{d} x$, area under curve - area under PR
Shaded area is $\int_{0}^{3}\left((2 x+1) \mathrm{e}^{-\mathrm{x}}-\left(\frac{7 \mathrm{e}^{-3}-1}{3} x+1\right)\right) \mathrm{d} x$

$$
=0.529
$$

A1 N4
49.) (a) Using the chain rule (M1)
$f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \quad$ A1
$f^{\prime \prime}(x)=-(10 \sin (5 x-3)) 5$
$=-50 \sin (5 x-3) \quad$ A1A1 4
Note: Award (A1) for $\sin (5 x-3)$, (A1) for -50 .
(b) $\quad \int f(x) \mathrm{d} x=\frac{2}{5} \cos (5 x-3)+c$

Note: Award (A1) for $\cos (5 x-3),(A 1)$ for $-\frac{2}{5}$.
50.) (a) $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$ (M1)

$$
=-10
$$

$$
\text { A1 } 3
$$

(b) $s=\int v d t$

$$
\begin{equation*}
=50 t-5 t^{2}+c \tag{M1}
\end{equation*}
$$

A1

$$
40=50(0)-5(0)+c \Rightarrow c=40
$$

$s=50 t-5 t^{2}+40$
51.) (a) (i) $f^{\prime}(x)=-x+2 \quad \mathrm{~A} 1$
(ii) $f^{\prime}(0)=2 \quad$ A1 2
(b) Gradient of tangent at $y$-intercept $=f^{\prime}(0)=2$
$\Rightarrow$ gradient of normal $=\frac{1}{2}(=-0.5)$
Finding $y$-intercept is 2.5
Therefore, equation of the normal is

$$
\begin{align*}
& y-2.5=\sim(x-0)(y-2.5=-0.5 x) \\
& (y=-0.5 x+2.5 \tag{AG}
\end{align*}
$$M1

(c)
(i)
solving $-0.5 x^{2}+2 x+2.5=-0.5 x+2.5$
$\Rightarrow x=0$ or $x=5$

## EITHER

(M1)A1 A1 2

OR


Curves intersect at $x=0, x=5$
So solutions to $f(x)=g(x)$ are $x=0, x=5$
OR
$\Rightarrow 0.5 x^{2}-2.5 x=0$
$\Rightarrow-0.5 x(x-5)=0$ M1
$\Rightarrow x=0$ or $x=5$
A1 2
(ii) Curve and normal intersect when $x=0$ or $x=5$

Other point is when $x=5$
$\Rightarrow y=-0.5(5)+2.5=0$ (so other point $(5,0)$
(d)
(i)Area $=\int_{0}^{5}(f(x)-g(x)) \mathrm{d} x\left(\right.$ or $\left.\int_{0}^{5}\left(-0.5 x^{2}+2 x+2.5\right) \mathrm{d} x-\frac{1}{2} \times 5 \times 2.5\right)$

A1A1A1 3
Note: Award (A1) for the integral, (A1) for both correct limits on the integral, and (A1) for the difference.
(ii) $\quad$ Area $=$ Area under curve - area under line $\left(A=A_{1}-A_{2}\right)$
$(A 1)=\frac{50}{3}, A_{2}=\frac{25}{4}$
Area $=\frac{50}{3}-\frac{25}{4}=\frac{125}{12}($ or $10.4(3 \mathrm{sf})$
52.) (a) (i) $\quad p=(10 x+2)-\left(1+\mathrm{e}^{2 x}\right) \mathrm{A} 2 \quad 2$

Note: Award (Al) for $\left(l+e^{2 x}\right)-(10 x+2)$.
(ii) $\frac{\mathrm{d} p}{\mathrm{~d} x}=10-2 \mathrm{e}^{2 x}$

$$
\begin{aligned}
& \frac{\mathrm{d} p}{\mathrm{~d} x}=0 \quad\left(10-2 \mathrm{e}^{2 x}=0\right) \\
& x=\frac{\ln 5}{2}(=0.805)
\end{aligned}
$$

A1A1
(b)
(i)

## METHOD 1

$$
\begin{aligned}
& x=1+\mathrm{e}^{2 x} \\
& \ln (x-1)=2 y \\
& f^{-1}(x)=\frac{\ln (x-1)}{2}\left(\text { Allow } y=\frac{\ln (x-1)}{2}\right)
\end{aligned}
$$

METHOD 2
53.) (a) $\quad f^{\prime}(x)=5(3 x+4)^{4} \times 3\left(\neq 5(3 x \quad \#)^{4}\right) \quad(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{A} 1) \quad(\mathrm{C} 3)$
(b) $\quad \int(3 x+4)^{5} \mathrm{~d} x=\frac{1}{3} \times \frac{1}{6}(3 x \quad 4)^{6}+\left(\frac{(3 x+4)^{6}}{18} t\right.$
(A1)(A1)(A1) (C3)
54.) Attempting to integrate.(M1)

$$
y=x^{3}-5 x
$$

$$
(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{A} 1)
$$

substitute $(2,6)$ to find $c\left(6=2^{3}-5(2) \quad\right.$ セ $)$
$c=8$

$$
\begin{aligned}
& y-1=\mathrm{e}^{2 x} \quad \mathrm{~A} 1 \\
& \frac{\ln (y-1)}{2}=x \\
& f^{-1}(x)=\frac{\ln (x-1)}{2}\left(\text { Allow } y=\frac{\ln (x-1)}{2}\right) \\
& \text { (ii) } \quad a=\frac{\ln (5-1)}{2}\left(=\frac{1}{2} \ln 2^{2}\right) \\
& =\frac{1}{2} \times 2 \ln 2 \\
& =1 \text { n } 2 \\
& \text { (c) Using } V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x \\
& \text { Volume }=\int_{0}^{\ln 2} \pi\left(1+\mathrm{e}^{2 x}\right)^{2} \mathrm{~d} x \quad\left(\text { or } \int_{0}^{0.805} \pi\left(1+\mathrm{e}^{2 x}\right)^{2} \mathrm{~d} x\right) \\
& \text { A2 } 3
\end{aligned}
$$

$$
\begin{equation*}
y=x^{3}-5 x \quad 8\left(\text { Accept } x^{3}-5 x-8\right) \tag{C6}
\end{equation*}
$$

55.) (a) $\quad \frac{\mathrm{d}}{\mathrm{d} x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x) \quad\left(=f(4)+g^{\prime}(4)\right)$

$$
\begin{align*}
& =7+4 \\
& =11 \tag{A1}
\end{align*}
$$

(b) $\quad \int_{1}^{3}\left(g^{\prime}(x)+6\right) \mathrm{d} x=[g(x)]_{1}^{3}+[6 x]_{1}^{3}$

$$
\begin{align*}
& =(g(3)-g(1)) \quad(18-6)\left(\begin{array}{ll}
\left(\begin{array}{ll}
7 & 1
\end{array}\right) & 12
\end{array}\right)  \tag{A1}\\
& =13
\end{align*}
$$

(A1) (C4)
56.) Using $\int \frac{1}{x}=\ln x \quad$ (may be implied) $\quad$ (M1)

$$
\begin{align*}
\int_{3}^{k} \frac{1}{x-2} \mathrm{~d} x= & {[\ln (x-2)]_{3}^{k} }  \tag{A1}\\
& =\ln (k-2)-\ln 1 \tag{A1}
\end{align*}
$$

$\ln (\mathrm{k}-2)-\ln 1=\ln 7$

$$
\begin{align*}
k-2 & =7  \tag{A1}\\
\mathrm{k} & =9
\end{align*}
$$

(A1) (C6)
57.)
(a) $s=25 t-\frac{4}{3} t^{3}+c \quad(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)$

Note: Award no further marks if " $c$ " is missing.
Substituting $s=10$ and $t=3$

$$
\begin{align*}
10 & =25 \times 3-\frac{4}{3}(3)^{3}+c  \tag{M1}\\
10 & =75-36+c \\
c & =-29  \tag{A1}\\
s & =25 t-\frac{4}{3} t^{3}-29 \tag{A1}
\end{align*}
$$

(b) METHOD 1
$s$ is a maximum when $v=\frac{\mathrm{d} s}{\mathrm{~d} t}=0$ (may be implied)

$$
25-4 t^{2}=0
$$

$$
\begin{align*}
& t^{2}=\frac{25}{4} \\
& t=\frac{5}{2} \tag{A1}
\end{align*}
$$

## METHOD 2

Using maximum of $s\left(12 \frac{2}{3}\right.$, may be implied)
$25 t-\frac{4}{3} t^{3}-29=12 \frac{2}{3}$
$\mathrm{t}=2.5$
(A1) (N2)
(c) $25 t-\frac{4}{3} t^{3}-29>0 \quad$ (accept equation)
$m=1.27, n=3.55$
(A1) (A1) (N3)
58.)

> Note: There are many approaches possible. However, there must be some evidence of their method.

Area $=\int_{0}^{k} \sin 2 x \mathrm{~d} \boldsymbol{x} \quad$ (must be seen somewhere)
Using area $=0.85 \quad$ (must be seen somewhere)

## EITHER

Integrating $\left[\frac{-1}{2} \cos 2 x\right]_{0}^{k}$
$\left(=\frac{-1}{2} \cos 2 \mathrm{k}+\frac{1}{2} \cos 0\right)$
Simplifying $\frac{-1}{2} \cos 2 k+0.5$
Equation $\frac{-1}{2} \cos 2 k+0.5=0.85 \quad(\cos 2 k=-0.7)$

## OR

Evidence of using trial and error on a GDC
$\operatorname{Eg} \int_{0}^{\frac{\pi}{2}} \sin 2 x \mathrm{~d} x=0.5, \frac{\pi}{2}$ too small etc
OR
Using GDC and solver, starting with $\int_{0}^{k} \sin 2 x \mathrm{~d} x-0.85=0(\mathrm{M} 1)(\mathrm{A} 1)$

## THEN

$k=1.17$
(A2) (N3)
59.) (a)

(A1)(A1) 2
Note: Award (A1) for a second branch in approximately the correct position, and (A1) for the second branch having positive $x$ and y intercepts. Asymptotes need not be drawn.
(b)
(i) $\quad x$-intercept $=\frac{1}{2}\left(\operatorname{Accept}\left(\frac{1}{2}, 0\right), x=\frac{1}{2}\right)$
$y$-intercept $=1(\operatorname{Accept}(0,1), y=1)$
(ii) horizontal asymptote $y=2$
vertical asymptote $x=1$
(A1) 4
(c)
(i)

$$
\begin{equation*}
f^{\prime}(x)=0-(x-1)^{-2}\left(=\frac{-1}{(x-1)^{2}}\right) \tag{A2}
\end{equation*}
$$

(ii) no maximum / minimum points.
since $\frac{-1}{(x-1)^{2}} \neq 0$
(d)
(i)

$$
2 x+\ln (x-1)+c(\text { accept } \ln |x-1|)(\mathrm{A} 1)(\mathrm{A} 1)(\mathrm{A} 1)
$$

(ii) $\quad A=\int_{2}^{4} f(x) \mathrm{d} x\left(\operatorname{Accept} \int_{2}^{4}\left(2+\frac{1}{x-1}\right) \mathrm{d} x,[2 x+\ln (x-1)]_{2}^{4}\right) \quad$ (M1)(A1)

Notes: Award (A1) for both correct limits.
Award (M0)(A0) for an incorrect function.
(iii) $\quad A=[2 x+\ln (x-1)]_{2}^{4}$

$$
\begin{align*}
& =(8+\ln 3)-(4+\ln 1)  \tag{M1}\\
& =4+\ln 3(=5.10, \text { to } 3 \mathrm{sf})
\end{align*}
$$

(A1) (N2) 7
60.) $f(x)=-\frac{1}{2} \mathrm{e}^{-2 x} \quad \operatorname{tn}(1 \quad x-c \quad(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)$

Substituting $4=-\frac{1}{2} \mathrm{e}^{-2(0)} \operatorname{tn}(1 \quad 0) \quad c \quad\left(\right.$ or $4=-\frac{1}{2} \operatorname{tn} 1 \quad c+$
$c=4.5$
$f(x)=-\frac{1}{2} \mathrm{e}^{-2 x} \quad \operatorname{tn}(1 \quad x) \quad 4.5$
$(\mathrm{A} 1)(\mathrm{C} 2)(\mathrm{C} 2)(\mathrm{C} 2)$
61.) (a) (i) 16 (A2) (C2)
(ii) $\quad \int_{0}^{3} f(x) \mathrm{d} x+\int 2 \mathrm{~d} x$ (or appropriate sketch)

$$
\begin{equation*}
=14 \tag{M1}
\end{equation*}
$$

(b) $\quad \int_{c}^{d} f(x-2) \mathrm{d} x \neq$

$$
\begin{equation*}
c=2, d=5 \tag{A2}
\end{equation*}
$$

62.) (a)
(i) $\quad a=1-\pi(\operatorname{accept}(1 \quad-0) \pi)$
(A1)
(ii) $b=1+\pi \quad(\operatorname{accept}(1+\pi 0))$
(A1) 2
(b)
(i)
$\int_{-2.14}^{1} h(x) \mathrm{d} x-\int^{2} h(x) \mathrm{d} x(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)$
OR

$$
\int_{-2.14}^{1} h(x) \mathrm{d} x+\left|\int^{2} h(x) \mathrm{d} x\right|
$$

$$
(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)
$$

OR

$$
\int_{-2.14}^{1} h(x) \mathrm{d} x+\int_{2} h(x) \mathrm{d} x
$$

$$
(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)
$$

(ii) $5.141 \ldots-(\theta .1585 \ldots)$
$=5.30$
(A2) 5
(c)
(i)
$y=0.973$ (A1)
(ii) -0.240 « 8.973
(A3) 4
63.) (a) $y=0$ (A1) 1
(b) $f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$
(A1)(A1)(A1) 3
(c) $\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}=0$ (or sketch of $f^{\prime}(x)$ showing the maximum)
$6 x^{2}-2 \neq$
$x= \pm \sqrt{\frac{1}{3}}$
$x=\frac{-1}{\sqrt{3}}(=-0.577)$
(A1) (N4) 4
(d)

$$
\int_{-0.5}^{0.5} \frac{1}{1+x^{2}} \mathrm{~d} x\left(=2 \int^{.5} \frac{1}{1+x^{2}} \mathrm{~d} x=2 \int_{.5}^{0} \frac{1}{1+x^{2}} \mathrm{~d} x \quad(\mathrm{~A} 1)(\mathrm{A} 1) 2\right.
$$

64.)
(a) $\frac{1}{2} \times 10=5$
(b) $\int_{1}^{3} g(x) \mathrm{d} x+\int_{1}^{3} 4 \mathrm{~d} x$
(C2)

$$
\begin{equation*}
\int_{1}^{3} 4 \mathrm{~d} x[4 x]_{1}^{3} \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
=4 \times 2=8 \tag{A1}
\end{equation*}
$$

$\int_{1}^{3}(g(x)+4) \mathrm{d} x=10+8=18$
65.) (a) (i) When $t=0, v=50+50 \mathrm{e}^{0} \quad$ (A1)

$$
\begin{equation*}
=100 \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}
\end{equation*}
$$

(ii) When $\begin{aligned} t=4, v & =50+50 \mathrm{e}^{-2} \\ & =56.8 \mathrm{~m} \mathrm{~s}^{-1}\end{aligned}$

$$
\begin{equation*}
=56.8 \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}
\end{equation*}
$$

(b) $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t} \Rightarrow s=\int v \mathrm{~d} t$

$$
\begin{equation*}
\int_{0}^{4}\left(50+50 \mathrm{e}^{-0.5 t}\right) \mathrm{d} t \tag{A1}
\end{equation*}
$$

Note: Award (A1) for each limit in the correct position and (A1) for the function.
(c) Distance travelled in 4 seconds $=\int_{0}^{4}\left(50+50 \mathrm{e}^{-0.5 t}\right) \mathrm{d} t$

$$
\begin{align*}
& =\left[50 t-100 \mathrm{e}^{-0.5 t}\right]_{0}^{4}  \tag{A1}\\
& \left.=\left(200-100 \mathrm{e}^{-2}\right)^{-\left(0-100 \mathrm{e}^{0}\right.}\right) \\
& =286 \mathrm{~m}(3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

Note: Award first (A1) for [50t-100e $\left.e^{-0.5 t}\right]$, ie limits not required.
OR
Distance travelled in 4 seconds $=286 \mathrm{~m}(3 \mathrm{sf})$
(d)


Notes: Award (A1) for the exponential part, (A1) for the straight line through (11, 0),
Award (A1) for indication of time on $x$-axis and velocity on $y$-axis,
(A1) for scale on $x$-axis and $y$-axis.
Award (A1) for marking the point where $t=4$.
(e) Constant rate $=\frac{56.8}{7}$

$$
\begin{equation*}
=8.11 \mathrm{~m} \mathrm{~s}^{-2} \tag{M1}
\end{equation*}
$$

Note: Award (M1)(A0) for-8.11.
(f) $\quad$ distance $=\frac{1}{2}(7)(56.8)$
$=199 \mathrm{~m}$
Note: Do not award ft in parts $(e)$ and $(f)$ if candidate has not used a straight line for $t=4$ to $t=11$ or if they continue the exponential beyond $t=4$.
66.) (a)
(i) $\quad \cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}, \sin \left(-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}}$
therefore $\cos \left(-\frac{\pi}{4}\right)+\sin \left(-\frac{\pi}{4}\right)=0 \quad$ (AG)
(ii) $\cos x+\sin x=0 \Rightarrow 1+\tan x=0$

$$
\begin{equation*}
\Rightarrow \tan x=-1 \tag{M1}
\end{equation*}
$$

$x=\frac{3 \pi}{4}$

Note: Award (A0) for 2.36.

## OR

$$
\begin{equation*}
x=\frac{3 \pi}{4} \tag{G2}
\end{equation*}
$$

(b) $y=\mathrm{e}^{x}(\cos x+\sin x)$

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\mathrm{e}^{x}(\cos x+\sin x)+\mathrm{e}^{x}(-\sin x+\cos x) \\
& =2 \mathrm{e}^{x} \cos x
\end{aligned}
$$

(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ for a turning point $\Rightarrow 2 \mathrm{e}^{x} \cos x=0$

$$
\begin{align*}
& \Rightarrow \cos x=0  \tag{A1}\\
& \Rightarrow x=\frac{\pi}{2} \Rightarrow a=\frac{\pi}{2}  \tag{A1}\\
& y=\mathrm{e}^{\frac{\pi}{2}}\left(\cos \frac{\pi}{2}+\sin \frac{\pi}{2}\right)=\mathrm{e}^{\frac{\pi}{2}} \\
& b=\mathrm{e}^{\frac{\pi}{2}} \tag{A1}
\end{align*}
$$

Note: Award (M1)(A1)(A0)(A0) for $a=1.57, b=4.81$.
(d) At $\mathrm{D}, \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$
$2 \mathrm{e}^{x} \cos x-2 \mathrm{e}^{x} \sin x=0$
$2 \mathrm{e}^{x}(\cos x-\sin x)=0$
$\Rightarrow \cos x-\sin x=0$
$\Rightarrow x=\frac{\pi}{4}$
$\Rightarrow y=\mathrm{e}^{\frac{\pi}{4}}\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right)$

$$
\begin{equation*}
=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}} \tag{A1}
\end{equation*}
$$

(e) Required area $=\int_{0}^{\frac{3}{4}} \mathrm{e}^{x}(\cos x+\sin x) \mathrm{d} x$

$$
\begin{equation*}
=7.46 \text { sq units } \tag{M1}
\end{equation*}
$$

## OR

Area $=7.46$ sq units
Note: Award (M1)(G0) for the answer 9.81 obtained if the calculator is in degree mode.
67.) $y=\int \frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x \quad$ (M1)
$=\frac{x^{4}}{4}+\frac{2 x^{2}}{2}-x+c \quad(\mathrm{~A} 1)(\mathrm{A} 1)$
Note: Award (A1) for first 3 terms, (A1) for " $+c$ ".

$$
\begin{align*}
& 13=\frac{16}{4}+4-2+c  \tag{M1}\\
& c=7 \tag{A1}
\end{align*}
$$

$y=\frac{x^{4}}{4}+x^{2}-x-7$
(A1) (C6)
68.)
(a) $\quad \int(1+3 \sin (x+2)) \mathrm{d} x=x-3 \cos (x+2)+c \quad$ (A1)(A1)(A1) (C3)

Notes: Award Al for $x$, Al for $-\cos (x+2)$ Al for coefficient 3, ie Al Al for the second term, which may be written as $+3(-\cos (x+2))$
Do not penalize the omission of $c$.
(b) $1+3 \sin (x+2)=0$
$\sin (x+2)=-\frac{1}{3}$
$x+2=-0.3398, \pi+0.3398, \ldots$
$x=-2.3398,1.4814, \ldots$
Required value of $x=1.48$
69.)
(a) (i) $f^{\prime}(x)=-2 \mathrm{e}^{-2 x}$
(ii) $\quad f^{\prime}(x)$ is always negative
(R1) 2
(b)
(i)
$y=1+\mathrm{e}^{-2 \times-\frac{1}{2}}(=1+\mathrm{e})$
(ii) $f^{\prime}\left(-\frac{1}{2}\right)=-2 \mathrm{e}^{-2 \times-\frac{1}{2}}(=-2 \mathrm{e})$

Note: In part (b) the answers do not need to be simplified.
(c) $y-(1+\mathrm{e})=-2 \mathrm{e}\left(x+\frac{1}{2}\right)$

$$
\begin{equation*}
y=-2 \mathrm{e} x+1(y=-5.44 x+1) \tag{M1}
\end{equation*}
$$

(d)

(ii)

(iii)

(A1)(A1)(A1)

Notes: Award (A1) for each correct answer. Do not allow (ft) on an incorrect answer to part (i). The correct final diagram is shown below. Do not penalize if the horizontal asymptote is missing. Axes do not need to be labelled.
(i)(ii)(iii)

(iv) Area $=\int_{-\frac{1}{2}}^{0}\left[\left(1+\mathrm{e}^{-2 x}\right)-(-2 \mathrm{e} x+1)\right] \mathrm{d} x$ (or equivalent)
(M1)(M1)
Notes: Award (M1) for the limits, (M1) for the function. Accept difference of integrals as well as integral of difference. Area below line may be calculated geometrically.

$$
\begin{align*}
\text { Area } & =\int_{-\frac{1}{2}}^{0}\left[\left(\mathrm{e}^{-2 x}+2 \mathrm{e} x\right) \mathrm{d} x\right. \\
& =\left[-\frac{1}{2} \mathrm{e}^{-2 x}+\mathrm{e} x^{2}\right]_{-\frac{1}{2}}^{0}  \tag{A1}\\
& =0.1795 \ldots=0.180(3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

## OR

Area $=0.180$
70.) $f(x)=\int\left(\frac{1}{x+1}-0.5 \sin x\right) \mathrm{d} x$ (M1)
$=\ln |x+1|+0.5 \cos x+c \quad(\mathrm{~A} 1)(\mathrm{A} 1)(\mathrm{A} 1)$
$2=\ln 1+0.5+c \quad(\mathrm{M} 1)$
$c=1.5(\mathrm{~A} 1)$
$f(x)=\ln |x+1|+0.5 \cos x+1.5$
71.) (a) $\int_{0}^{1} \mathrm{e}^{-k x} \mathrm{~d} x=\left[-\frac{1}{k} \mathrm{e}^{-k x}\right]_{0}^{1}$ (A1)
$=-\frac{1}{k}\left(\mathrm{e}^{-k}-\mathrm{e}^{0}\right)(\mathrm{A} 1)$
$=-\frac{1}{k}\left(\mathrm{e}^{-k}-1\right)(\mathrm{A} 1)$
$=-\frac{1}{k}\left(1-\mathrm{e}^{-k}\right)(\mathrm{AG}) \quad 3$
(b) $k=0.5$
(i)


Note: Award (A1) for shape, and (A1) for the point ( 0,1 ).
(ii) Shading (see graph)
(iii) Area $=\int_{0}^{1} \mathrm{e}^{-k x} \mathrm{~d} x$ for $\mathrm{k}=0.5$
$=\frac{1}{0.5}\left(1-\mathrm{e}^{0.5}\right)$
$=0.787(3 \mathrm{sf})$
OR
Area $=0.787(3 \mathrm{sf})$
(G2) 5
(c)
(i)

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=-k e^{-k x} \tag{A1}
\end{equation*}
$$

$$
\text { (ii) } \quad \begin{align*}
& x=1 \quad y=0.8 \Rightarrow 0.8=\mathrm{e}^{-k}  \tag{A1}\\
& \ln 0.8=-k  \tag{A1}\\
& k=0.223
\end{align*}
$$

(iii) At $x=1 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=-0.223 \mathrm{e}^{-0.223}$

OR

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=-0.178 \text { or }-0.179 \tag{A1}
\end{equation*}
$$

72.) $\quad f(x)=x^{\frac{3}{2}} \quad$ (M1)
(a) $f^{\prime}(x)=\frac{3}{2} x^{\frac{3}{2}-1}=\frac{3}{2} x^{\frac{1}{2}}\left(\right.$ or $\left.\frac{3}{2} \sqrt{x}\right)$
(M1)(A1) (C3)
(b) $\int x^{\frac{3}{2}} \mathrm{~d} x=\frac{1}{\frac{3}{2}+1} x^{\frac{3}{2}+1}+c$

$$
\begin{equation*}
=\frac{2}{5} x^{\frac{5}{2}}+c\left(\text { or } \frac{2}{5} \sqrt{x^{5}}+c\right) \tag{A1}
\end{equation*}
$$

Notes: Do not penalize the absence of $c$.
Award (A1) for $\frac{5}{2}$ and (A1) for $x^{\frac{5}{2}}$.
73.) Area $=\int_{a}^{b} \sin x \mathrm{~d} x$ (M1)
$a=0, b=\frac{3 \pi}{4} \quad$ (A1)
Area $=\int_{0}^{\frac{3 \pi}{4}} \sin x \mathrm{~d} x=[-\cos x]_{0}^{\frac{3 \pi}{4}}$
$=\left(-\cos \frac{3 \pi}{4}\right)-(-\cos 0)$
$=-\left(-\frac{\sqrt{2}}{2}\right)-(-1)$
$=1+\frac{\sqrt{2}}{2}$
(A1) (C6)
Note: Award (G3) for a gdc answer of 1.71 or 1.707.
74.) (a) At A, $x=0 \Rightarrow y=\sin \left(\mathrm{e}^{0}\right)=\sin (1) \quad$ (M1)
$\Rightarrow$ coordinates of $\mathrm{A}=(0,0.841) \quad(\mathrm{A} 1)$
OR
$\mathrm{A}(0,0.841) \quad(\mathrm{G} 2) \quad 2$
(b) $\quad \sin \left(\mathrm{e}^{x}\right)=0 \Rightarrow \mathrm{e}^{x}=\pi$
$\Rightarrow x=\ln \pi($ or $k=\pi)$
OR
$x=\ln \pi($ or $k=\pi)$
(c) (i) Maximum value of $\sin$ function $=1$ (A1)
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \cos \left(\mathrm{e}^{x}\right)$

Note: Award (A1) for $\cos \left(e^{x}\right)$ and (A1) for $e^{x}$.
(iii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at a maximum
$\mathrm{e}^{x} \cos \left(\mathrm{e}^{x}\right)=0$
$\Rightarrow \mathrm{e}^{x}=0$ (impossible) or $\cos \left(\mathrm{e}^{x}\right)=0$

$$
\begin{equation*}
\Rightarrow \mathrm{e}^{x}=\frac{\pi}{2} \Rightarrow x=\ln \frac{\pi}{2} \tag{M1}
\end{equation*}
$$

6
(d)
(i)

$$
\begin{equation*}
\text { Area }=\int_{0}^{\ln \pi} \sin \left(\mathrm{e}^{x}\right) \mathrm{d} x(\mathrm{~A} 1)(\mathrm{A} 1)(\mathrm{A} 1) \tag{A1}
\end{equation*}
$$

Note: Award (A1) for 0, (A1) for $\ln \pi$, (A1) for $\sin \left(e^{x}\right)$.
(ii) Integral $=0.90585=0.906(3 \mathrm{sf})$
(G2) 5
(e)

(M1)
At P, $x=0.87656=0.877(3 \mathrm{sf})$
(G2) 3
75.)
(a) $\frac{\mathrm{d} s}{\mathrm{~d} t}=30-a t=>s=30 t-a \frac{t^{2}}{2}+C \quad$ (A1)(A1)(A1)

Note: Award (A1) for 30t, (A1) for a $\frac{t^{2}}{2}$, (A1) for C.

$$
\begin{align*}
& t=0 \Rightarrow s=30(0)-a \frac{\left(0^{2}\right)}{2}+C=0+C=>C=0  \tag{M1}\\
& \Rightarrow s=30 t-\frac{1}{2} a t^{2} \tag{A1}
\end{align*}
$$

(b)
(i)

$$
\begin{equation*}
\mathrm{vel}=30-5(0)=30 \mathrm{~m} \mathrm{~s}^{-1} \tag{A1}
\end{equation*}
$$

(ii) Train will stop when $0=30-5 t \Rightarrow t=6$

Distance travelled $=30 t-\frac{1}{2} a t^{2}$

$$
\begin{align*}
& =30(6)-\frac{1}{2}(5)\left(6^{2}\right)  \tag{M1}\\
& =90 \mathrm{~m} \tag{A1}
\end{align*}
$$

$90<200=>$ train stops before station.
(R1)(AG) 5
(c)
(i)

$$
\begin{equation*}
0=30-a t \Rightarrow t=\frac{30}{a} \tag{A1}
\end{equation*}
$$

(ii) $30\left(\frac{30}{a}\right)-\frac{1}{2}(a)\left(\frac{30}{a}\right)^{2}=200$

Note: Award (M1) for substituting $\frac{30}{a}$, (Ml) for setting equal to 200.

$$
\begin{equation*}
\Rightarrow \frac{900}{a}-\frac{450}{a}=\frac{450}{a}=200 \tag{A1}
\end{equation*}
$$

Note: Do not penalize lack of units in answers.
76.) Note: Do not penalize for the omission of $C$.
(a) $\int \sin (3 x+7) \mathrm{d} x=-\frac{1}{3} \cos (3 x+7)+C$
Note: Award (A1) for $\frac{1}{3}$, (A1) for $-\cos (3 x+7)$.
(A1)(A1) (C2)
(b) $\quad \int \mathrm{e}^{-4 x} \mathrm{~d} x=-\frac{1}{4} \mathrm{e}^{-4 x}+C$
(A1)(A1) (C2)
Note: Award (A1) for $-\frac{1}{4}$, (A1) for $e^{-4 x}$.
77.) (a) (i) $a=-3$ (A1)
(ii) $b=5$
(A1) 2
(b)
(i)
$f^{\prime}(x)=-3 x^{2}+4 x+15 \quad$ (A2)
(ii) $-3 x^{2}+4 x+15=0$
$-(3 x+5)(x-3)=0$
$x=-\frac{5}{3}$ or $x=3$
(A1)(A1)
OR

$$
\begin{align*}
& x=-\frac{5}{3} \text { or } x=3  \tag{G3}\\
& \text { (iii) } \quad x=3 \Rightarrow f(3)=-3^{3}+2\left(3^{2}\right)+15(3)  \tag{M1}\\
& =-27+18+45=36  \tag{A1}\\
& \\
& \text { OR }  \tag{G2}\\
& f(3)=36
\end{align*}
$$

(i) $\quad f^{\prime}(x)=15$ at $x=0$ (M1)

Line through $(0,0)$ of gradient 15
$\Rightarrow y=15 x$
OR
$y=15 x$
(ii) $-x^{3}+2 x^{2}+15 x=15 x$
$\Rightarrow-x^{3}+2 x^{2}=0$
$\Rightarrow-x^{2}(x-2)=0$
$\Rightarrow x=2$
OR
$x=2$
4
(d) $\quad$ Area $=115(3 \mathrm{sf})$

OR

$$
\begin{align*}
& \text { Area }=\int_{0}^{6}\left(-x^{3}+2 x^{2}+15 x\right) \mathrm{d} x=\left[-\frac{x^{4}}{4}+2 \frac{x^{3}}{3}+15 \frac{x^{2}}{2}\right]_{0}^{5}  \tag{M1}\\
& =\frac{1375}{12}=115(3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

78.) (a) (i) $\quad v(0)=50-50 \mathrm{e}^{0}=0$
(ii) $v(10)=50-50 \mathrm{e}^{-2}=43.2$
(A1) 2
(b)
(i)
$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=-50\left(-0.2 \mathrm{e}^{-0.2 t}\right) \quad(\mathrm{M} 1)$

$$
=10 \mathrm{e}^{-0.2 t}
$$

(A1)
(ii) $a(0)=10 \mathrm{e}^{0}=10$
(A1) 3
(c)
(i)
$t \rightarrow \infty \Rightarrow v \rightarrow 50(\mathrm{~A} 1)$
(ii) $t \rightarrow \infty \Rightarrow a \rightarrow 0$
(A1)
(iii) when $a=0, v$ is constant at 50
(R1) 3
(d)
(i)
$=50 t-\frac{\mathrm{e}^{-0.2 t}}{-0.2}+k$
$=50 t+250 \mathrm{e}^{-0.2 t}+k$ $y=\int v \mathrm{~d} t(\mathrm{M} 1)$
(ii) $0=50(0)+250 \mathrm{e}^{0}+k=250+k$
$\Rightarrow k=-250$
(iii) Solve $250=50 t+250 \mathrm{e}^{-0.2 t}-250$
$\Rightarrow 50 t+250 \mathrm{e}^{-0.2 t}-500=0$
$\Rightarrow t+5 \mathrm{e}^{-0.2 t}-10=0$
$\Rightarrow t=9.207 \mathrm{~s}$
(G2) 7
79.) $f^{\prime}(x)=1-x^{2}$
$f(x)=\int\left(1-x^{2}\right) \mathrm{d} x=x-\frac{x^{3}}{3}+C$
$f(3)=0 \Rightarrow 3-9+C=0$
$\Rightarrow c=6$
$f(x)=x-\frac{x^{3}}{3}+6$
80.) (a)

(b) $\quad \pi$ is a solution if and only if $\pi+\pi \cos \pi=0$.

Now $\pi+\pi \cos \pi=\pi+\pi(-1)$

$$
\begin{equation*}
=0 \tag{A1}
\end{equation*}
$$

(c) By using appropriate calculator functions $x=3.6967229 \ldots$

$$
\begin{equation*}
\Rightarrow x=3.69672 \text { (6sf) } \tag{M1}
\end{equation*}
$$

(d) See graph:

$$
\begin{equation*}
\int_{0}^{\pi}(\pi+x \cos x) \mathrm{d} x \tag{A1}
\end{equation*}
$$

(e) EITHER $\int_{0}^{\pi}(\pi+x \cos x) \mathrm{d} x=7.86960(6 \mathrm{sf})$

Note: This answer assumes appropriate use of a calculator eg 'fnInt': $\left\{\begin{array}{l}\text { fnInt }\left(Y_{1}, X, 0, \pi\right)=7.869604401 \\ \text { with } Y_{1}=\pi+x \cos x\end{array}\right.$

$$
\begin{align*}
& \text { OR } \int_{0}^{\pi}(\pi+x \cos x) \mathrm{d} x=[\pi x+x \sin x+\cos x]_{0}^{\pi} \\
& =\pi(\pi-0)+(\pi \sin \pi-0 \times \sin 0)+(\cos \pi-\cos 0)  \tag{A1}\\
& =\pi^{2}+0+-2=7.86960(6 \mathrm{sf}) \tag{A1}
\end{align*}
$$

81.) $f^{\prime}(x)=\cos x \Rightarrow f(x)=\sin x+C$ (M1)
$f\left(\frac{\pi}{2}\right)=-2 \Rightarrow-2=\sin \left(\frac{\pi}{2}\right)+C$
$C=-3$ (A1)
$f(x)=\sin x-3(\mathrm{~A} 1)$

(A5) 5
Notes: Award (A1) for appropriate scales marked on the axes.
Award (A1) for the $x$-intercepts at ( $\pm 2.3,0$ ).
Award (A1) for the maximum and minimum points at $( \pm 1.25$, $\pm 1.73$ ).
Award (A1) for the end points at $( \pm 3, \pm 2.55)$.
Award (A1) for a smooth curve.
Allow some flexibility, especially in the middle three marks here.
(b) $x=2.31$
(c) $\int(\pi \sin x-x) \mathrm{d} x=-\pi \cos x-\frac{x^{2}}{2}+C$

Note: Do not penalize for the absence of $C$.

$$
\begin{align*}
\text { Required area } & =\int_{0}^{1}(\pi \sin x-x) \mathrm{d} x  \tag{M1}\\
& =0.944 \tag{G1}
\end{align*}
$$

OR $\quad$ area $=0.944$
(G2) 4
83.) $f^{\prime}(x)=-2 x+3$
$f(x)=\frac{-2 x^{2}}{2}+3 x+c$ (M1)
Notes: Award (M1) for an attempt to integrate. Do not penalize the omission of $c$ here.

$$
\begin{align*}
& 1=-1+3+c  \tag{A1}\\
& c=-1  \tag{A1}\\
& f(x)=-x^{2}+3 x-1 \tag{A1}
\end{align*}
$$

84.) (a) $\quad f^{\prime}(x)=3(2 x+5)^{2} \times 2 \quad$ (M1)(A1)

Note: Award (M1) for an attempt to use the chain rule.

$$
\begin{equation*}
=6(2 x+5)^{2} \tag{C2}
\end{equation*}
$$

(b) $\int f(x) \mathrm{d} x=\frac{(2 x+5)^{4}}{4 \times 2}+c$

Note: Award (A1) for $(2 x+5)^{4}$ and (A1) for $/ 8$.

$$
\begin{align*}
& \\
& \begin{aligned}
& \text { Area }=\int_{1 \frac{1}{3}}^{2} x \mathrm{~d} y=\int_{1 \frac{1}{3}}^{2} \frac{1}{(y-1)} \mathrm{d} y \\
&=[\ln (y-1)]_{1 \frac{1}{3}}^{2} \\
&=\ln 1-\ln \frac{1}{3} \\
&=\ln 3
\end{aligned} \tag{M1}
\end{align*}
$$

## OR

$$
\begin{align*}
& \text { Area from } x=1 \text { to } x=3, A=\int_{1}^{3}\left(1+\frac{1}{x}\right) \mathrm{d} x=[x+\ln x]_{1}^{3} \\
& =(3+\ln 3)-(1+\ln 1)  \tag{M1}\\
& =2+\ln 3 \tag{A1}
\end{align*}
$$

Area rectangle $(1)=2 \times 1 \frac{1}{3}=2 \frac{2}{3}$, area rectangle $2=1 \times \frac{2}{3}=\frac{2}{3}$
Shaded area $=2+\ln 3-2 \frac{2}{3}+\frac{2}{3}$

$$
\begin{equation*}
=\ln 3 \tag{M1}
\end{equation*}
$$

## OR

Area from $x=1$ to $x=3, A=\int_{1}^{3}\left(1+\frac{1}{x}\right) \mathrm{d} x$

$$
\begin{equation*}
A=3.0986 \ldots \tag{M1}
\end{equation*}
$$

Area rectangle $1=2 \times 1 \frac{1}{3}=2 \frac{2}{3}$, area rectangle $2=1 \times \frac{2}{3}=\frac{2}{3}$

$$
\begin{align*}
\text { Shaded area } & =3.0986-2 \frac{2}{3}+\frac{2}{3}  \tag{M1}\\
& =1.10(3 \mathrm{sf})
\end{align*}
$$

Notes: An exact value is required. If candidates have obtained the answer 1.10, and shown their working, award marks as above. However, if they do not show their working, award (G2) for the correct answer of 1.10.
Award no marks for the giving of 3.10 as the final answer.
86.) (a)(i) \& (c)(i)


Notes: The sketch does not need to be on graph paper. It should have the correct shape, and the points (0, 0), (1.1, 0.55), (1.57, $0)$ and $(2,-1.66)$ should be indicated in some way.
Award (A1) for the correct shape.
Award (A2) for 3 or 4 correctly indicated points, (A1) for 1 or 2 points.
(ii) Approximate positions are
positive $x$-intercept $(1.57,0)$
maximum point $(1.1,0.55)$
(A1)
end points $(0,0)$ and $(2,-1.66)$
(A1)
$(\mathrm{A} 1)(\mathrm{A} 1)$
(b) $x^{2} \cos x=0$

$$
\begin{align*}
x \neq 0 & \Rightarrow \cos x=0  \tag{M1}\\
& \Rightarrow x=\frac{\pi}{2} \tag{A1}
\end{align*}
$$

Note: Award (A2) if answer correct.
(c)

## (i)

see graph (A1)
(ii) $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x d x$

Note: Award (A1) for limits, (A1) for rest of integral correct (do not penalize missing $d x$ ).
(d) Integral $=0.467$

OR

$$
\begin{align*}
& \text { Integral }=\left[x^{2} \sin x+2 x \cos x-2 \sin x\right]_{0}^{\pi / 2}  \tag{M1}\\
& =\left[\frac{\pi^{2}}{4}(1)+2\left(\frac{\pi}{2}\right)(0)-2(1)\right]-[0+0-0]  \tag{M1}\\
& =\frac{\pi}{2}-2 \text { (exact) or } 0.467(3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

87.) (a) From graph, period $=2 \pi \quad$ (A1) $\quad 1$
(b) Range $=\{y \mid-0.4<y<0.4\}$
(A1) 1
(c)
(i)

$$
f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left\{\cos x(\sin x)^{2}\right\}
$$

$=\cos x(2 \sin x \cos x)-\sin x(\sin x)^{2}$ or $-3 \sin ^{3} x+2 \sin x(\mathrm{M} 1)(\mathrm{A} 1)(\mathrm{A} 1)$
Note: Award (M1) for using the product rule and (A1) for each part.

$$
\text { (ii) } \begin{align*}
& f^{\prime}(x)=0  \tag{M1}\\
& \Rightarrow \sin x\left\{2 \cos x-\sin ^{2} x\right\}=0 \text { or } \sin x\{3 \cos x-1\}=0  \tag{A1}\\
& \Rightarrow 3 \cos ^{2} x-1=0 \\
& \Rightarrow \cos x= \pm \sqrt{\left(\frac{1}{3}\right)} \tag{A1}
\end{align*}
$$

At A, $f(x)>0$, hence $\cos x=\sqrt{\left(\frac{1}{3}\right)}$

$$
\text { (iii) } \begin{align*}
f(x) & =\sqrt{\left(\frac{1}{3}\right)\left(1-\left(\sqrt{\left(\frac{1}{3}\right)}\right)^{2}\right)}  \tag{M1}\\
& =\frac{2}{3} \times \frac{1}{\sqrt{3}}=\frac{2}{9} \sqrt{3} \tag{A1}
\end{align*}
$$

(d) $\quad x=\frac{\pi}{2}$
(A1) 1
(e)
(i) $\quad \int(\cos x)(\sin x)^{2} \mathrm{~d} x=\frac{1}{3} \sin ^{3} x+c(\mathrm{M} 1)(\mathrm{A} 1)$
(ii) Area $=\int_{0}^{\pi / 2}(\cos x)(\sin x)^{2} \mathrm{~d} x=\frac{1}{3}\left\{\left(\sin \frac{\pi}{2}\right)^{3}-(\sin 0)^{3}\right\}$

$$
\begin{equation*}
=\frac{1}{3} \tag{A1}
\end{equation*}
$$

(f) $\quad \operatorname{AtC} f^{\prime \prime}(x)=0$

$$
\begin{align*}
& \Leftrightarrow 9 \cos ^{3} x-7 \cos x=0  \tag{M1}\\
& \Leftrightarrow \cos x\left(9 \cos ^{2} x-7\right)=0  \tag{M1}\\
& \Rightarrow x=\frac{\pi}{2}(\text { reject }) \text { or } x=\arccos \frac{\sqrt{7}}{3}=0.491(3 \mathrm{sf}) \tag{A1}
\end{align*}
$$

88.) (a) $\quad p=3$ (A1) (C1)
(b) Area $=\int_{0}^{\frac{\pi}{2}} 3 \cos x \mathrm{~d} x$

$$
\begin{align*}
& =[3 \sin x]_{0}^{\frac{\pi}{2}}  \tag{A1}\\
& =3 \text { square units }
\end{align*}
$$

(A1) (C3)

$$
\begin{array}{lll}
\text { 89.) } & \begin{array}{l}
\text { (a) } \\
\Rightarrow
\end{array} & f^{\prime \prime}(x) \\
f^{\prime}(x) & =2 x-2 \\
& =x^{2}-2 x+c \quad(\mathrm{M} 1)(\mathrm{M} 1) \\
\Rightarrow & 0 & =9 \text { when } x=3 \\
c & =-3 \quad(\mathrm{~A} 1) \\
& & \\
f^{\prime}(x) & =x^{2}-2 x-3 \quad(\mathrm{AG})  \tag{M1}\\
& f(x) & =\frac{x^{3}}{3}-x^{2}-3 x+d
\end{array}
$$

When $x=3, \quad f(x)=-7$

$$
\begin{align*}
\Rightarrow & -7 & =9-9-9+d  \tag{M1}\\
\Rightarrow & d & =2  \tag{A1}\\
\Rightarrow & f(x) & =\frac{x^{3}}{3}-x^{2}-3 x+2 \tag{A1}
\end{align*}
$$

(c) $f^{\prime}(-1)=0 \Rightarrow\left(-1,3 \frac{2}{3}\right)$ is a stationary point

(A4) 4
Note: Award (A1) for maximum, (A1) for (0, 2) (A1) for (3, -7), (A1) for cubic.
90.) (a) $y=\mathrm{e}^{x / 2}$ at $x=0 y=\mathrm{e}^{0}=1 P(0,1) \quad$ (A1)(A1) 2
(b) $\quad V=\pi \int_{0}^{\ln 2}\left(e^{x / 2}\right)^{2} \mathrm{~d} x$
(A4) 4
Notes: Award (A1) for (A1) for each limit (A1) for $\left(e^{x / 2}\right)^{2}$.
(c) $\quad V=\int_{0}^{\ln 2} e^{x} \mathrm{~d} x$
$=\pi\left[e^{x}\right]_{0}^{\ln 2}$
$=\pi\left[\mathrm{e}^{\ln 2}-\mathrm{e}^{0}\right]$
$=\pi[2-1]=\pi$
(A1)(A1)
(AG) 5
91.) (a) $\quad \int_{0}^{1} 12 x^{2}(1-x) \mathrm{d} x \quad$ (A1) (C1)
(b) $12 \int_{0}^{1}\left(x^{2}-x^{3}\right) \mathrm{d} x$
$=12\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}$
$=12\left(\frac{1}{3}-\frac{1}{4}\right)$
$=1$
(A1) (C3)
92.) $\int_{1}^{a} \frac{1}{x} \mathrm{~d} x=2 \quad$ (M1)
$\Rightarrow[\ln x]_{1}^{a}=2 \quad$ (M1)
$\Rightarrow \ln a=2$
$\Rightarrow a=\mathrm{e}^{2}$
(A1) (C4)
Note: If 7.39 given instead of $e^{2}$ then deduct [1 mark].
93.) (a) $y=\ln x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x}$
when $x=\mathrm{e}, \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\mathrm{e}}$
tangent line: $y=\left(\frac{1}{\mathrm{e}}\right)(x-\mathrm{e})+1(\mathrm{M} 1)$
$y=\frac{1}{\mathrm{e}}(x)-1+1=\frac{x}{\mathrm{e}}$
$x=0 \Rightarrow y=\frac{0}{\mathrm{e}}=0$
$(0,0)$ is on line $(A G) \quad 4$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}(x \ln x-x)=(1) \times \ln x+x \times\left(\frac{1}{x}\right)-1=\ln x$
(M1)(A1)(AG) 2
Note: Award (M1) for applying the product rule, and (A1) for (1) $\times \ln x+x \times\left(\frac{1}{x}\right)$.
(c) Area $=$ area of triangle - area under curve

$$
\begin{align*}
& =\left(\frac{1}{2} \times \mathrm{e} \times 1\right)-\int_{1}^{\mathrm{e}} \ln x \mathrm{~d} x  \tag{A1}\\
& =\frac{\mathrm{e}}{2}-[x \ln x-x]_{1}^{\mathrm{e}}  \tag{A1}\\
& =\frac{\mathrm{e}}{2}-\{(\mathrm{e} \ln \mathrm{e}-1 \ln 1)-(\mathrm{e}-1)\}  \tag{A1}\\
& =\frac{\mathrm{e}}{2}-\{\mathrm{e}-0-\mathrm{e}+1\} \\
& =\frac{1}{2} \mathrm{e}-1
\end{align*}
$$

(AG) 4
94.)
(a) $y=x(x-4)_{2}$
(i) $y=0 \Leftrightarrow x=0$ or $x=4$
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=1(x-4)^{2}+x \times 2(x-4)=(x-4)(x-4+2 x)$
$=(x-4)(3 x-4)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow x=4$ or $x=\frac{4}{3}$
$\left.\begin{array}{l}x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(-3)(-1)=3>0 \\ x=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=(-2)(2)=-4<0\end{array}\right\} \Rightarrow \frac{4}{3}$ is a maximum
Note: A second derivative test may be used.

$$
\begin{align*}
& x=\frac{4}{3} \Rightarrow y=\frac{4}{3} \times\left(\frac{4}{3}-4\right)^{2}=\frac{4}{3} \times\left(\frac{-8}{3}\right)^{2}=\frac{4}{3} \times \frac{64}{9}=\frac{256}{27} \\
& \left(\frac{4}{3}, \frac{256}{27}\right) \tag{A1}
\end{align*}
$$

Note: Proving that $\left(\frac{4}{3}, \frac{256}{27}\right)$ is a maximum is not necessary to receive full credit of [4 marks] for this part.
(iii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{d} x}((x-4)(3 x-4))=\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x^{2}-16 x+16\right)=6 x-16$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0 \Leftrightarrow 6 x-16=0$
$\Leftrightarrow x=\frac{8}{3}$
$x=\frac{8}{3} \Rightarrow y=\frac{8}{3}\left(\frac{8}{3}-4\right)^{2}=\frac{8}{3}\left(\frac{-4}{3}\right)^{2}=\frac{8}{3} \times \frac{16}{9}=\frac{128}{27}$

$$
\begin{equation*}
\left(\frac{8}{3}, \frac{128}{27}\right) \tag{A1}
\end{equation*}
$$

Note: GDC use is likely to give the answer (1.33, 9.48). If this answer is given with no explanation, award (A2), If the answer is given with the explanation "used GDC" or equivalent, award full credit.
(b)


Note: Award (A1) for intercepts, (A1) for maximum and (A1) for point of inflexion.
(c)
(i) See diagram above (A1)
(ii) $0<y<10$ for $0 \leq x \leq 4$ (R1)
So $\int_{0}^{4} 0 \mathrm{~d} x<\int_{0}^{4} y \mathrm{~d} x<\int_{0}^{4} 10 \mathrm{~d} x \Rightarrow 0<\int_{0}^{4} y \mathrm{~d} x<40$
(R1) 3

